
SUMMER PROCEEDINGS 2015

The Center for Computing Research at Sandia National
Laboratories

Editors:

Andrew M. Bradley and Michael L. Parks

Sandia National Laboratories

December 18, 2015

CCR
Center for Computing Research

A Department of Energy
National LaboratorySAND#: SAND2015-XXXX X

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department

of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2016-0830R

ii CR Summer Proceedings 2015

Issued by Sandia National Laboratories, operated for the United States Department of
Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government, nor any agency
thereof, nor any of their employees, nor any of their contractors, subcontractors, or their
employees, make any warranty, express or implied, or assume any legal liability or re-
sponsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represent that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed
herein do not necessarily state or reflect those of the United States Government, any
agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from
the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
I C

A

A.M. Bradley and M.L. Parks iii

Preface

The Center for Computing Research (CCR) at Sandia National Laboratories organizes a
summer student program each summer, in coordination with the Computer Science Research
Institute (CSRI) and Cyber Engineering Research Institute (CERI).

CERI focuses on open, exploratory research in cyber security in partnership with
academia, industry, and government, and provides collaborators an accessible portal to
Sandia’s cybersecurity experts and facilities. Moreover, CERI provides an environment for
visionary, threat-informed research on national cyber challenges.

CSRI brings university faculty and students to Sandia National Laboratories for focused
collaborative research on DOE computer and computational science problems. CSRI pro-
vides a mechanism by which university researchers learn about problems in computer and
computational science at DOE Laboratories. Participants conduct leading–edge research,
interact with scientists and engineers at the laboratories, and help transfer the results of
their research to programs at the labs.

A key component of CCR programs over the last decade has been an active and pro-
ductive summer program in which students from around the country conduct internships at
Sandia. Each student is paired with a Sandia staff member who serves as technical advisor
and mentor. The goals of the summer program are to expose the students to research in the
mathematical and computer sciences at Sandia and to conduct a meaningful and impactful
summer research project with their Sandia mentor. Every effort is made to align summer
projects with the student’s research objectives and all work is coordinated with the ongoing
research activities of the Sandia mentor in alignment with Sandia technical thrusts.

Starting in 2014, CERI and CSRI combined their efforts to form the CCR Summer
Proceedings. Both CERI and CSRI encourage all summer participants and their mentors
to contribute a technical article to the CCR Summer Proceedings. In many cases, the CCR
Proceedings are the first opportunity that students have to write a research article. Not
only do these proceedings serve to document the research conducted during the summer
but, as part of the research training goals of Sandia, it is the intent that these articles serve
as precursors to or first drafts of articles that could be submitted to peer–reviewed journals.
As such, each article has been reviewed by a Sandia staff member knowledgeable in that
technical area with feedback provided to the authors. Several articles have or are in the
process of being submitted to peer–reviewed conferences or journals and we anticipate that
additional submissions will be forthcoming.

For the 2015 CCR Proceedings, research articles have been organized into the following
broad technical focus areas—computational mathematics, applications, and software and
high performance computing—which are well aligned with Sandia’s strategic thrusts in com-
puter and information sciences.

We would like to thank all participants who have contributed to the outstanding tech-
nical accomplishments of CSRI and CERI in 2015. The success of the program hinged on
the hard work of enthusiastic student collaborators and their dedicated Sandia technical
staff mentors. We would also like to thank those who reviewed articles for this proceedings;
their feedback is an important part of the research training process and has significantly
improved the quality of the reports.

An important educational component of the summer program is the CCR Summer
Seminar Series. We would like to thank the staff who spoke at the 2015 Series: Laura
Matzen (org. 1463), Jason Wheeler (6533), Bruce Hendrickson (1400), Jean-Paul Watson
(1464), Carter Edwards (1426), Megan Slinkard (5752), Mark Taylor (1446), Stephen Olivier
(1423), Steve Plimpton (1444), and Ojas Parekh (1464).

iv CR Summer Proceedings 2015

Finally, the CCR summer program would not be possible without the administrative and
IT support of Ashley Avallone, Jonathan Compton, Steven Garcia, Bill Goldman, Denise
LaPorte, Amy Levan, Lorena Martinez, Sandra Portlock, Phyllis Rutka, and Bernadette
Watts.

Andrew M. Bradley
Michael L. Parks

December 18, 2015

A.M. Bradley and M.L. Parks v

Table of Contents

Preface
A.M. Bradley and M.L. Parks . iii

Computational Mathematics
A.M. Bradley and M.L. Parks . 1

Verification of an Improved Cylindrical Magnetic Diffusion Algorithm in ALEGRA
C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 3

New Developments in Using Schwarz Methods for Model Coupling
J. Cheung, M. Perego, and P. Bochev . 14

Development of Higher Order Strong Stability Preserving Implicit-Explicit Runge
Kutta Method
S. Conde and J.N. Shadid . 27

Nonlocal Multiscale Finite Element Method
T. Costa, S.D. Bond, D. Littlewood, and S. Moore 40

Sensitivity of a functional to estimate the convection coefficient
C.A. Garavito-Garzón and R.B. Lehoucq . 52

Active Subspaces for CFD/MHD
A.T. Glaws, T.M. Wildey, and J.N. Shadid 64

A Time-Parallel Method for the Solution of PDE-Constrained Optimization Prob-
lems
M. Hajghassem, E.C. Cyr, and D. Ridzal . 79

Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computa-
tions
M.H. Jamal and D.Z. Turner . 93

Improving the Tracer Correlation Problem in a Spectral Element Dynamical Core
N.A. Lopez and M.A. Taylor . 106

First-Order Approximate Augmented Lagrangian Method (FOAAL) Implemented
via an Object-Parallel Infrastructure for First-Order Methods, with a Serial
Example Application to the Unit Commitment Problem
G. Mátyásfalvi, J. Eckstein, and J. P. Watson 118

Quasiminimal Support Optimization-Based Remap for Transport
S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 132

A Modification to the Remapping of Gauss-Lobatto Nodes to the Cubed Sphere
M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 145

Cross Platform Fine Grained ILU and ILDL Factorizations Using Kokkos
A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 159

Applications
A.M. Bradley and M.L. Parks . 178

Water Network Hydraulics with Pressure-Dependent Demand for WNTR: a Water
Network Tool for Resilience
M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola . 179

Assessing the Economic Value of Grid-Scale Energy Storage Systems for Power
System Expansion Planning
R.S. Go, F.D. Muñoz, and J.P. Watson . 189

Efficient Destination Prediction Using Aircraft Trajectory Data
B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 202

Uncertainty Quantification of the Interfacial Mass Transfer Model in CTF
Nathan W. Porter and Vincent A. Mousseau 212

vi CR Summer Proceedings 2015

SPPARKS Software Updates
J.M. Roberts, A.P. Thompson, J.A. Mitchell, and V.T. Tikare 225

Graph Representation for Neural Networks
F. Wang and F. Rothganger . 230

Software and High Performance Computing
A.M. Bradley and M.L. Parks . 239

Performance Portable High Performance Conjugate Gradient Benchmark
Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux 241

Insights for the Design and Use of Generic Scientific Workflow Components
A. Champsaur and G. Lofstead . 250

Hypergraph Partitioning with Local Refinement for Improving the Performance of
Finite Element Methods on Distributed Unstructured Meshes
G.F. Diamond and K.D. Devine . 261

Optimization of Block Sparse Matrix-Vector Multiplication on Shared-Memory
Parallel Architectures
R. Eberhardt and M. Hoemmen . 276

A Thread-Scalable Performance Portable Unordered Map for Manycore Architec-
tures
P.R. Eller and H.C. Edwards . 290

Creating an AMGX Adapter within the MueLu Package
E. Furst, A. Prokopenko, and J. Hu . 307

Testing Framework for a Hybrid Triangular Solver
W.B. Held and A.M. Bradley . 317

Visualization for Multigrid Aggregation
B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 322

Simulating CMT-bone Communication Routines using Light-Weight Network End-
point Models
N. Kumar and S.D. Hammond . 333

In Situ Stream Processing and Storage for Exascale Systems
E.W. Lohrmann and P. Widener . 340

Material Models for Next Generation Platforms
N. Morales, D. Littlewood, and S. Moore . 348

Marching Cubes Application for Mantevo
S.J. Munn and K. Morland . 355

Comparing Power Profiles of Molecular Dynamics Simulators
J.T. Raitses and R.E. Grant . 364

Visualizing the UTri Equation of State
J.M. Staten, J.H. Carpenter, and A.C. Robinson 367

A.M. Bradley and M.L. Parks 1

Computational Mathematics

Computational mathematics is concerned with the design, analysis, and implementation of
algorithms to solve mathematical problems. Articles in this section describe the discretiza-
tion of partial differential equations and methods to solve equations, couple multiphysics
systems of equations, and quantify uncertainty in models.

Ashcraft, Niederhaus, and Robinson verify the convergence speed and the accuracy of a
new formulation of the discretization of the two-dimensional cylindrical symmetric magnetic
diffusion equations. As part of this work, they develop a new manufactured solution for
their method of manufactured solution study. The verified method can now replace the less
efficient one in ALEGRA.

Cheung, Perego, and Bochev use alternating Schwarz methods to address two problems
of coupling. The first problem is that of gaps in coupled interfaces, as for example those that
occur when two contacting objects are meshed separately. The second application couples
Density Functional Theory to the Poisson-Nernst-Planck equations.

Conde and Shadid find implicit-explicit (IMEX) Runge–Kutta schemes for the addi-
tive initial value problem that are strong stability preserving (SSP) in the explicit and
implicit parts separately and also in the overall scheme. The schemes are demonstrated on
a convection-diffusion equation and coupled first-order wave equations.

Costa, Bond, Littlewood, and Moore describe a nonlocal multiscale finite element method
(MSFEM) that solves the peridynamic model at multiple spatial scales. The MSFEM is an
efficient means to incorporate small-scale heterogeneities into a coarse-scale solution.

Garavito-Garzón and Lehoucq perform numerical experiments to determine the robust-
ness, sensitivity, and dependence on boundary conditions of a functional used in a PDE-
constrained optimization approach to estimating the velocity field in image data.

Glaws, Wildey, and Shadid explore active subspaces, a new dimension reduction method.
They summarize the method; analyze methods to estimate the dimension reduction error;
apply these methods to standard verification problems in computational fluid dynamics and
magnetohydrodynamics to provide a framework for understanding the relationship between
the active variables and the underlying physics; and then apply them to a more challenging
problem.

Hajghassem, Cyr, and Ridzal develop methods that parallelize the time dimension of
optimization problems constrained by linear time-dependent PDE. Their method is based
on developing a parallel-in-time preconditioner.

Jamal and Turner focus on speeding up multiscale computational methods. They apply
an efficient coupling schedule to recursively subdivided spatial subdomains in a peridynamics
application to couple subdomains in time and space at different time scales. The schedule
is computed using subdomain-specific models of computational cost.

Lopez and Taylor study existing, and propose new, limiters for the spectral element
core of the Community Atmosphere Model. They use a simplified chemistry model and a
test problem that has sharp tracer gradients to determine the extent to which each limiter
maintains linear tracer correlations.

Mátyásfalvi, Eckstein, and Watson implement an object-oriented, parallel optimizer
called FOAAL. It has interfaces to AMPL and PYOMO. They apply it to a unit commitment
problem.

Moe, Bochev, Peterson, and Ridzal develop a new optimization-based remap (OBR)
algorithm suited to incremental remap and semi-Lagrangian transport applications. In this
OBR method, global mass conservation is enforced while approximately minimizing the
subset of the grid on which the update has a nonphysical domain of dependence. Results of

2 CR Summer Proceedings 2015

this method are compared with a previous method that did not attempt to minimize this
subset.

Mundt, Boslough, Taylor, and Roesler create a more accurate dual grid for use in the
climate science High-Order Methods Modeling Environment (HOMME). The dual grid is
important for the conservation of energy and water in climate simulations. They analyze
the performance of remapping operations using their dual grid.

Patel, Boman, Rajamanickam, and Chow describe the implementation of a fine grained,
asynchronous, iterative algorithm to compute incomplete approximate factorization precon-
ditioners for sparse matrices. The algorithm reformulates the factorization process as the
iterative solution of a nonlinear system of equations by a fixed point method. Approximate
application of the preconditioner is essentially a sequence of matrix-vector products and so
also is largely fine grained and asynchronous.

A.M. Bradley
M.L. Parks

December 18, 2015

CCR Summer Proceedings 2015 3

VERIFICATION OF AN IMPROVED CYLINDRICAL MAGNETIC
DIFFUSION ALGORITHM IN ALEGRA

CLAYTON C. ASHCRAFT∗, JOHN H. NIEDERHAUS† , AND ALLEN C. ROBINSON‡

Abstract. ALEGRA is one of Sandia’s simulation codes used to simulate magnetohydrodynamic
phenomena. One application of this code is to calculate the magnetic flux density, Bθ, in a continuum
by solving the two-dimensional cylindrical symmetric magnetic diffusion equations; however, ALEGRA’s
current Bθ formulations do not converge optimally. We seek to implement a new formulation that converges
both quickly and accurately by implementing a change in coordinates inspired by a paper written by J.B.M.
Melissen and J. Simkin [2]. We do so, and perform a detailed verification analysis. Our verification study
uses a wire-in-a-void model to create a non-trivial test problem for which we can derive an analytical solution.
We derive one using perturbation theory, but find it is non-uniformly accurate near t = 0 and is less than
satisfactory for completing our verification study. We formulate a new analytical solution using the method
of manufactured solutions, and are then able to show that the new formulation performs as expected. With
the new formulation verified, we briefly discuss a few additional results and some research on an exploding
wire problem using the new formulation. Details omitted in this paper will be available in a future Sandia
report[1].

1. Introduction. The ALEGRA code was written to conveniently solve the resistive
magnetohydrodynamic (MHD) equations, which are frequently used to model high-current,
high-energy field phenomena in a conducting continuum. Operator splitting in ALEGRA
results in a magnetic diffusion sub-problem of the form:

∂B
∂t

= −∇× (
1
σ

(∇× B
µ

)) (1.1)

or

σ

(
−∂A
∂t
−∇φ

)
= ∇× (

∇×A
µ

) (1.2)

where σ is the electrical conductivity, B is the magnetic flux, and A is the vector potential.
In this paper, we are interested in the two dimensional simplifications of Equation 1.1 when
the problem is axi-symmetric and the fundamental variable is the out-of-plane magnetic
field component, Bθ.

Code has already been developed in ALEGRA to find the value of Bθ under these
conditions with the constraint that the magnetic permeability, µ, is constant. If a non-
constant µ is necessary or desired, one would need to solve using an Hθ formulation, which
we do not discuss here.

∗Brigham Young University, cc.ash@byu.edu
†Sandia National Laboratories, jhniede@sandia.gov
‡Sandia National Laboratories, acrobin@sandia.gov

4 PSI-S Verification

We seek to improve the Bθ code. We show that the original, straightforward Fully
Integrated Finite Element (FIFE) formulation of the code, which we will simply refer to as
the FIFE formulation from now on, can converge very slowly to the correct solution, making
it difficult to justify the computational expense required to obtain useful simulation data.
An alternately implemented formulation, which we will call the R-Scaled formulation, solves
for rBθ and converges much more rapidly, but it tends to be inaccurate near r = 0, reducing
its utility on problems which require accurate computation in that region. Both of these
issues restrict the researcher’s ability to analyze problems of interest, so here we introduce
a new formulation, referred to as the PSI-S formulation, to rectify these issues and make
ALEGRA even more robust and capable.

The PSI-S formulation was inspired by a paper written by J.B.M. Melissen and J.
Simkin [2]. In their paper, they apply a clever change of coordinates to the cylindrical
coordinate version of Equation 1.2, resulting in the elimination of a singularity in the spatial
discretization and a large overall improvement in the discrete error. We use the same strategy
with Equation 1.1 to produce the PSI-S formulation. Eliminating the singularity generates
an equation set perfectly suited for linear finite elements.

Thus, we expect the PSI-S formulation to be more accurate and to converge faster
than the current formulations, and in order to demonstrate this superiority, we perform a
verification analysis and report the results below.

2. Finite Element Formulation. Under 2D cylindrically symmetric assumptions,
ALEGRA performs computations in an (r, z) coordinate system, where r represents the
radius in cylindrical geometry, and z represents the orthogonal direction in the plane. Fol-
lowing Melissen and Simkin, we perform a coordinate change on the R-Scaled formulation,
taking it from (r, z) coordinates to (s, z), where s = r2 and setting ψ = rBθ to be the de-
pendent variable. This relatively simple change eliminates a singularity in the finite element
magnetic diffusion equations used by ALEGRA and is the foundation of our entire report.

In this section, we will give the finite element magnetic diffusion equation for the new
formulation, along with its matrix equivalent. Some derivation is included, but most will
be skipped for the sake of maintaining brevity in this report. More detail can be found in
the future Sandia report[1].

2.1. Magnetic Diffusion Equation. We begin with the the magnetic diffusion equa-
tion that ALEGRA solves after the Lagrangian hydrodynamic motion step, given by Equa-
tion 1.1, with µ set equal to µ0, the magnetic permeability of free space. Moving to to 2D
cylindrical geometry and using the magnetic flux function ψ = rBθ, this becomes

∂ψ

∂t
= r

∂

∂r

(
η

µ0r

∂ψ

∂r

)
+

∂

∂z

(
η

µ0

∂ψ

∂z

)
. (2.1)

where η = 1
σ . Noting that the 1

r coefficient presents a problem as r → 0, we make the
change in coordinates: s = r2, and ds = 2rdr. The resulting magnetic diffusion equation is:

1
s

∂ψ

∂t
=

∂

∂s

(
4η
µ0

∂ψ

∂s

)
+

∂

∂z

(
η

sµ0

∂ψ

∂z

)
. (2.2)

Note that now the s does not appear inside an s derivative.

2.2. Matrix Equation for Magnetic Diffusion. Continuing from Equation 2.2, we
multiply by an arbitrary test function W , and take the volume integral of 2.2 over a domain
or sub-domain, Ω, resulting in Equation 2.3.

C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 5

∫
Ω

W
1
s

∂ψ

∂t
dsdz

=
∫

Ω

W

(
∂

∂s

(
4η
µ0

∂ψ

∂s

)
+

∂

∂z

(
η

sµ0

∂ψ

∂z

))
dsdz

=
∫

Ω

W (∇ ·M(s)∇ψdsdz) (2.3)

where

M(s) =

[
4η
µ0

0
0 η

µ0s

]
.

Applying the identity ∇ · (fA) = (∇f) · A + f (∇ ·A), the divergence theorem, and
Ohm’s Law, we arrive at

∫
Ω

W
1
s

∂ψ

∂t
dsdz +

∫
Ω

∂W

∂s

4η
µ0

∂ψ

∂s
+
∂W

∂z

η

µ0s

∂ψ

∂z
dsdz

=
∫
∂Ω

W (SE) · tdl (2.4)

where t is the tangent unit vector, S =
[1√

s
0

0 2

]
, E is the electric field in the plane, and

l is the arc-length in the (s, z) plane.
Note the presence of the 1/s terms in the integrals. While these terms might initially

appear to be problematic as s → 0, the solution and the test function are required to be
O(s) as s→ 0, so the integrals are not singular.

Finally, using the normal linear finite element assembly process where we set ψ =∑
j ψjNj , Nj being the standard linear finite element basic functions, and applying a back-

wards Euler time discretization, we get the elemental matrices

Me
ij =

∫
Ωe

Ni
1
s
Njdsdz

Ke
ij =

∫
Ωe

(
∂Ni
∂s

4η
µ0

∂Nj
∂s

+
∂Ni
∂z

η

µ0s

∂Nj
∂z

)
dsdz

Lei =
∫
∂Ωe

Ni (SE) · tdl

which assemble to the global equations

Mij

ψn+1
j − ψnj

∆t
+Kijψ

n+1
j = L

n+1/2
i . (2.5)

6 PSI-S Verification

3. Verification. In order to perform our verification analysis, we need to design a test
problem that is simple enough for analytical study, yet has all the features of typical MHD
problems of interest. In this case, problems of interest are those which have large jumps
in material conductivity near the axis, have the magnetic field out of the plane, and are
described by the magnetic flux density diffusion equations. These types of problems are
common, and the various Bθ formulations are applicable.

Our problem of choice is a wire in a void model, with a constant, axial tangential electric
field assumed to exist along the interface. Figure 3.1 shows the problem’s physical set up:
A cylindrical rod of height h, radius a, and conductivity σr, surrounded by a void region
of conductivity σv � σr, and depth b − a. We assume an instantaneous jump at t = 0 to
a constant, axial-tangential electric field along the interface of the rod and the void, which
generates a time dependent magnetic flux, Bθ, through the rod and the void.

This magnetic flux is well understood, and has a solvable analytic solution. Inside the
rod, the solution for Bθ with respect to the rod radius should appear as a diffusion wave
into the rod early in time until reaching a radial linear steady state profile. This will happen
regardless of the dimensions of the rod or the magnitude of the electric field applied, and a
complete analytical expression for this behavior is attainable using Laplace transforms. In
the void, Ampere’s law says that Bθ should behave approximately like µ0I(t)

2πr for all time,
where I(t) is the total current enclosed and r is the distance from the z axis. However,
this is merely the leading order solution. We also want to demonstrate a robust solution
methodology when the conductivity in the void is non-zero. The Bθ formulation is unable
to handle zero-valued conductivity, so we set the void conductivity to be very small relative
to the conductivity of the rod (e.g. σv

σr
≈ 10−6). The ramification is that now the solution

in the void region is perturbed, making the analytical solution more difficult to derive. We
could still, in principle, solve the inner-outer region exact solution via transform techniques,
but this is unnecessary, and would not provide much value; so instead, we choose the electric
field we desire at the interface r = a, for which we have an exact solution, and then compute
the electric field boundary condition for the interface r = b that will impose it. This will
provide an excellent verification of ALEGRA’s ability to perform over a conductivity jump.

6

θ

h
ẑ

(0,0) a b

Figure 1: Metal Rod in a Void

6

h
ẑ

Figure 2: ALEGRA 2D (r,z) Cross Section

e tan bc

2mm 3mm

1mm rod void

Figure 3: 2D (r,z) mesh with BC on right side

1

Fig. 3.1: Metal Rod in a Void

C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 7

3.1. Solution in the Rod. Our strategy for obtaining an analytical solution for this
problem is to focus first on the solution in the rod, which we can solve for using Laplace
transforms and residue theory, then obtain a perturbation solution in the void that coincides
with the solution in the rod at the conductivity jump. Combining the two gives us a
complete analytical solution for the test problem that can be used to verify the accuracy,
and superiority, of our new numerical formulation. The solution for Bθ in the rod is

Bθ(r, t) =
µ0σrV

h

r2 − 2a
∞∑
n=1

e
−

„
k2
n

µ0σra2

«
t
J ′0
(
knr
a

)
k2
nJ
′
0(kn)

 (3.1)

where V is the voltage drop across the wire, J0 is the Bessel function of the first kind of
order 0, and kn is the nth root of J0. As a check, notice that as t→∞, Bθ goes to a linear
profile, which is what we expected.

3.2. Solution in the Void: Perturbation Solution. We now need to approximate
a solution in the void region which is consistent with this inner solution for non-zero σv. A
perturbation analysis in small σv is our first approach. Assuming continuity of the electrical
and magnetic fields at r = a gives us the solution:

Bθ(r, t) =
µ0I(t)

2πr
+ µ0σv

[
µ0İ(t)

2π

(
r

2
ln
(r
a

)
− r

4
+
a2

4r

)
+
V

2h

(
r − a2

r

)]
. (3.2)

It follows that the boundary condition that we will use in ALEGRA to produce our
desired electric field at r = a is an electric field at r = b given by:

E(b, t) =
V

h
+
µ0İ(t)

2π
ln
(
b

a

)
+ µ0σv

[
µ0Ï(t)

2π

(
b2 + a2

4
ln
(
b

a

)
− b2

4
+
a2

4

)]
(3.3)

where, again, I(t) is the total current in the rod, and is given by I(t) = 2πa
µ0
Bθ(a, t).

3.3. Set Up in ALEGRA. We set up our model as a 1mm long cylindrical rod with
a 2mm radius, a 3mm deep void (see Figure 3.3), and a 1000V/m electric field maintained
on the surface of the rod for t > 0. We use Equation 3.3 to produce a boundary condition
at r = b that should produce the same effect in ALEGRA as if we applied the electric
field directly to the surface of the rod. For the electrical conductivity of the rod we choose
σr = 1 MΩ ·m, and for the electrical conductivity of the void we chose σr = 1.0 Ω ·m.

8 PSI-S Verification

6

θ

h
ẑ

(0,0) a b

Figure 1: Metal Rod in a Void

6

h
ẑ

Figure 2: ALEGRA 2D (r,z) Cross Section

e tan bc

2mm 3mm

1mm rod void

Figure 3: 2D (r,z) mesh with BC on right side

1

Fig. 3.2: ALEGRA 2D (r,z) Cross Section

6

θ

h
ẑ

(0,0) a b

Figure 1: Metal Rod in a Void

6

h
ẑ

Figure 2: ALEGRA 2D (r,z) Cross Section

e tan bc

2mm 3mm

1mm rod void

Figure 3: 2D (r,z) mesh with BC on right side

1

Fig. 3.3: 2D (r,z) mesh with BC on right side

For our mesh, we create two blocks, one representing the rod and another representing
the void. This allows us to ensure that the conductivity jump is on the boundaries of
elements regardless of how many elements we want to use. We set each block to have only
one element in the z direction, and allow the number of elements in the r or s direction to
vary. Because we anticipate the PSI-S formulation to converge very quickly, we set the first
mesh size in our study to have one element per block in the r or s direction. Thus, our very
first mesh has exactly two elements. The strategy we employ for increasing the mesh size is
to double the number of elements per block, per test.

In order to get ALEGRA to produce easily interpreted results, we impose a condition on
the time steps ALEGRA uses to perform its calculations. The theoretical leading order error
in ALEGRA’s discrete solution is O(∆t) + O((∆r)2), where ∆t is the time step used in the
calculation, and ∆r (or ∆s) is the length of a mesh element. So by forcing ∆t ∝ (∆r)2, we
make our error O((∆r)2)+ O((∆r)2) = O((∆r)2), which allows us to confidently expect an
order 2 convergence rate for these tests.

Finally, in order to see whether or not the PSI-S formulation is outperforming previously
implemented formulations, we will run ALEGRA on our test problem using the FIFE, the
R-Scaled, and PSI-S formulations and then compare.

C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 9

3.4. Results from Perturbation Solution. Figures 3.4, 3.5, 3.6, show plots of ALE-
GRA results for the different formulations for the different mesh sizes as well as a table
showing the convergence rates measured for each mesh size. The black line represents the
analytical solution we derived previously. Each result is given at time t = 1.5µs, which is
fairly representative of our general results and is still in the transient phase of problem. Also,
each plot represents nodal data from nodes located at the bottom of the mesh (z = 0.0).
We could look at the nodal data at the top of the mesh or the elemental data at the center
of the mesh as well, but nodal values are more accurate, and, since we have essentially made
this problem one dimensional by having only one element in the z direction, we are able to
accurately represent the overall results by only examining this set of nodes.

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 2.09611e-01
2 2.09611e-01
4 7.31077e-02
8 2.16658e-02
16 1.01580e-02
32 2.09721e-02

Fig. 3.4: FIFE formulation at t = 1.5µs

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.52564e+00
2 1.52564e+00
4 1.43740e+00
8 1.35715e+00
16 1.29348e+00
32 1.22582e+00

Fig. 3.5: R-Scaled formulation at t = 1.5µs

10 PSI-S Verification

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.40072e+00
2 1.40072e+00
4 1.38177e+00
8 1.27804e+00
16 1.16535e+00
32 1.07729e+00

Fig. 3.6: PSI-S formulation at t = 1.5µs

We can see that FIFE formulation does not converge at all for these mesh resolutions
(the largest two mesh resolutions are barely distinguishable at the bottom of the plot). As
a matter of fact, we do not see convergence for this formulation at all until we have mesh
resolutions of thousands of elements. This slow overall convergence is what makes this
formulation impractical.

The R-Scaled formulation does better, but seems to be converging at an order one
convergence instead of two. We see the same with the PSI-S formulation. This is not what
we expected.

To check our work, we construct two variations of our test, and briefly state our results
and conclusions. In the first variation, we perform the same test but with the void block
removed. We observe second order convergence for the FIFE and PSI-S formulations, and
less than second order convergence for R-Scaled formulation. For the second, instead of
driving the problem with an electric field boundary condition, we use a magnetic field
boundary condition proportional to total current. Here we again observe second order
convergence for FIFE and PSI-S, and less than second order convergence for R-Scaled. We
attribute the slower convergence rate of the R-Scaled formulation to its inaccuracies near
r = 0; then, based on these observations, we conclude that the numerical algorithms in
ALEGRA are coded correctly.

3.5. Solution in the Void: Manufactured Solution. Because it seems that there
are no problems with ALEGRA, we conclude that the problem is the approximate analytical
solution. We can see that Equations 3.2 and 3.3 both depend on derivatives of I(t), which are
singular at t = 0, so some inaccuracies can be expected from these equations. In this case,
it seems that these inaccuracies are significant enough to disrupt our verification analysis,
particularly the boundary condtion given by Equation 3.3. The remedy, then, is a new
analytical solution without these types of singularities.

C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 11

The method we now employ for finding an analytical solution is the Method of Man-
ufactured Solutions. We assume that our analytical solution for Bθ in the rod holds, and
use it to manufacture a solution for Bθ in the void by again matching continuous magnetic
and electric fields to our derived interior solution at the interface r = a. The solution in the
void is

Bθ(r, t) =
µ0σvV

2h
r − c1µ0

r
−
∞∑
n=1

λ2
ne
− λ2

n
µ0σv

t [
anJ

′
0(λ

2
nr) + bnY

′
0(λ

2
nr)
]

(3.4)

where Y0 is the Bessel function of the second kind of order 0, and c1, λn, an, and bn are:

c1 =
(σv − σr)V

2h
a2

λn =

√
σvk2

n

σra2

an = −
(

2(σr)2µ0a
3V

σvk4
nh

)
Y0(ξn)

J0(ξn)Y ′0(ξn)− Y0(ξn)J ′0(ξn)

bn =
(

2(σr)2µ0a
3V

σvk4
nh

)
J0(ξn)

J0(ξn)Y ′0(ξn)− Y0(ξn)J ′0(ξn)

ξn =
σvk

2
n

σra
.

With this solution, we now have to impose both a boundary condition at r = a and an
initial condition in ALEGRA. The Bθ initial condition we impose is given by

Bθ(r, 0) =

{
µ0σrV
h

[
r
2 − 2a

∑∞
n=1

J′0(knra)

k2
nJ
′
0(kn)

]
, r ≤ a

µ0σvV
2h r − µ0c1

r −
∑∞
n=1 λ

2
n

[
anJ

′
0(λ2

nr) + bnY
′
0(λ2

nr)
]
, r > a

(3.5)

and the electric field boundary condition is

E(b, t) =
V

h
+

1
µ0σv

∞∑
n=1

λ2
ne
− λ2

n
µ0σv

t [anJ0(λ2
nb) + bnY0(λ2

nb)
]
. (3.6)

3.5.1. Results from Manufactured Solution. We analyze and plot the results of
our test with the manufactured solution the same way we did previously, and this time
they meet our expectations. As with the perturbation solution, Figure 3.7 shows that the
FIFE formulation does not converge at these resolutions. Thousands of elements are needed.
However, at resolutions of 100 to 3200 elements, we can show that this formulation is actually
second order convergent, but this need for highly resolved meshes to get convergence still
makes this formulation impractical to use. Figure 3.8 shows that the R-Scaled formulation
is approaching a convergence rate of just under 1.5, which we learned from our simplified
problems is to be expected. Finally, Figure 3.9 demonstrates the excellent convergence and
accuracy of the PSI-S formulation, successfully concluding our verification analysis.

12 PSI-S Verification

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 2.09611e-01
2 2.09611e-01
4 7.31078e-02
8 2.16662e-02
16 1.01587e-02
32 2.09737e-02

Fig. 3.7: FIFE formulation with manufactured solution at t = 1.5µs

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.59109e+00
2 1.59109e+00
4 1.60632e+00
8 1.66119e+00
16 1.53120e+00
32 1.45542e+00

Fig. 3.8: R-Scaled formulation with manufactured solution at t = 1.5µs

0.000 0.001 0.002 0.003 0.004 0.005
0.0

0.2

0.4

0.6

0.8

1.0

1.2

BTHETA at t = 1.50000005306e-06
z = 0.0

elements: 2

elements: 4

elements: 8

elements: 16

elements: 32

elements: 64

analytic Number of elements per block Order of convergence
1 1.52672e+00
2 1.52672e+00
4 1.75725e+00
8 2.24243e+00
16 2.33500e+00
32 2.03655e+00

Fig. 3.9: PSI-S formulation with manufactured solution at t = 1.5µs

C.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson 13

4. Additional Work. In addition to our verification study, we are able to identify
several positive effects of the implementation of the PSI-S formulation. We find that the
PSI-S formulation improves the accuracy not only of the magnetic flux (Bθ) computations,
but also the of current density (J), the pressure, and temperature computations. The
differences are significant and clearly visible near r = 0.

The effects of the PSI-S formulation on the exploding wire problem, however, are per-
haps even more dramatic. We still notice the more accurate computations near r = 0; but
in addition, we see a considerable variation in wire exploding time and behavior when using
the PSI-S formulation compared to the R-Scaled formulation. This suggests that our work
may be of significance for many practical problems as well as advancing our original goal
of improving solution quality of axi-symmetric momentum diffusion problems in ALEGRA
[1].

5. Conclusions. ALEGRA is one of Sandia’s simulation codes used to simulate mag-
netohydrodynamic phenomena. One application of this code is to calculate the magnetic
flux, Bθ, in a continuum by solving the two-dimensional cylindrical symmetric magnetic
diffusion equations. We have shown that ALEGRA’s current Bθ formulations converge
non-optimally and sought to develop a new formulation that converged both quickly and
accurately. By implementing a change in coordinates inspired by a paper written by J.B.M.
Melissen and J. Simkin, we did so, and performed a detailed verification analysis to demon-
strate the expected benefits. Our verification study used a wire-in-a-void model to create
a non-trivial test problem for which we could derive an analytical solution. We derived
one using perturbation theory, but found that it was not uniformly accurate and could not
satisfy our verification study, so we formulated a new analytical solution using the method
of manufactured solutions, and were able to show that the new formulation performed as
expected. With the new formulation verified, we briefly discussed a few additional results
and some research on the exploding wire problem using the new formulation.

REFERENCES

[1] C. C. Ashcraft and A. C. Robinson, Verification of an Improved Cylindrical Magnetic Diffusion
Algorithm in ALEGRA, tech. rep., SNL, in preparation. 2015.

[2] J. Melissen and J. Simkin, A New Coordinate Transform for the Finite Element Solution of Axisym-
metric Problems in Magnetostatics, IEEE Transactions on Magnetics, 26 (1990), pp. 391–394.

CCR Summer Proceedings 2015 14

NEW DEVELOPMENTS IN USING SCHWARZ METHODS FOR MODEL
COUPLING

JAMES CHEUNG∗, MAURO PEREGO† , AND PAVEL B. BOCHEV‡

Abstract. In this proceeding report, we discuss our progress of the two projects we have worked on
during the 2015 Summer Intern Program at CSRI. We divide our report in two sections: local extension
formulation for coupling mismatching interfaces, and the classical Schwarz method for coupling classical
density functional theory and the Poisson-Nernst-Planck equation. Despite the fact that both of these
projects solve very distinct problems, they share a common design principle rooted in alternating Schwarz
procedures.

In the first part of the report, we present the concept of using extensions to bridge gaps in general
noncoincident interface coupling problems. We show that using the Steklov-Poincaré framework and the
Dirichlet-Neumann iterative method, we are able to pass a linear patch test while converging at the same
rate as the Dirichlet-Neumann method for coincident interfaces.

In the second part of the report, we demonstrate the potential of the classical Schwarz iterative method
to couple classical Density Functional Theory to the Poisson-Nernst-Planck equations in one dimension.
The cDFT-PNP coupling project is an ongoing endeavor, and we hope that in the near future we will be
able to demonstrate this coupling in two dimensions.

1. Local extension formulation for coupling mismatching interfaces.

1.1. Introduction. In many computational applications, boundary value problems
(BVPs) are solved on separate domains coupled through a sharp interface. Often, separate
discretization of the problem domains result in non-matching interfaces. The mismatch of
the discrete interfaces leads to overlaps and voids that make formulating a coupling method
a difficult endeavor. Typically, the mismatch occurs as a result of meshing requirements
for specific problems. An example of this is the coupling of fluid equations with structural
equations, where a finer mesh is required at the interface of the fluid domain to capture
boundary layer effects, while a coarse mesh is sufficient to model the mechanics of the
structure. Currently, the most common methods for dealing with mismatching interfaces
involve meshing the gaps at the mismatched interface, and the projection of quantities from
a “master” interface to a “slave” interface [12, 2]. While these methods allow the transfer
of quantities from one mismatched interface to another, oftentimes they are not trivial to
implement and may have an adverse impact on the computational efficiency. In addition,
they may also induce oscillations, or “ghost forces”, in the neighborhood of the interface.

In this part of the report, we present a simple method to couple BVPs with mismatching
interfaces using local Taylor series extensions. We use a Steklov-Poincaré framework [11, 17]
to couple the extension data between two models. While the focus of this work is to bridge
gaps at the noncoincident interface using extensions, we also demonstrate that application
of our approach to mesh overlaps also yields an accurate solution. We will also demonstrate
that this method fulfills the desirable requirement of passing a linear patch test. We focus
on piecewise linear finite elements in this work.

1.2. Notation. Let Ωi, i = 1, 2 be the subdomains where the boundary value problems
are posed and ui, i = 1, 2 to be the solution of the said BVPs. The coupled solution
u = u1

∣∣
Ω1

+ u2

∣∣
Ω2

lives on the domain Ω = Ω1 ∪ Ω2. We denote Γ = ∂Ω1 ∩ ∂Ω2 to be the
interface where we wish to enforce continuity of u1 and u2.

In our discrete problem, we denote Ωhi , i = 1, 2, as the triangulation of Ωi and uhi , to
be the discrete solution of the BVPs. We denote the coupled solution uh = uh1

∣∣
Ωh1

+ uh2
∣∣
Ωh2

,

∗Department of Scientific Computing, Florida State University, jc07g@my.fsu.edu
†Sandia National Laboratories, mperego@sandia.gov
‡Sandia National Laboratories, pbboche@sandia.gov

J. Cheung, P. Bochev, and M. Perego 15

where uh lives on the coupled domains Ωh = Ωh1 ∪ Ωh2 . We denote Γhi , to be the discrete
interfaces where we wish to approximate continuity of our solutions. Generally, Γh1 6= Γh2
since we are considering separate discretizations of Ωi.

We will define operators Ei, to be extension operators that extend the domain of ui
into Ω̂i, where we have denoted Ω̂i as the extended domain such that ∂Ω̂1 ∩ ∂Ω2 = Γ2,
∂Ω̂2 ∩ ∂Ω1 = Γ1, and ∂Ω̂i ∩ ∂Ωi = ∂Ωi \ Γi, where i = 1, 2. Likewise, we will denote Ehi , to
be extension operators that extend the domain of uhi into Ω̂hi , where Ω̂hi is a discretization
of Ω̂i.

In our report, we use the shorthand notation ∂niv = ∇v · ni, to denote the normal
derivative relative to the interfaces Γi. We also denote ahi (µh, ηh) =

(
ki∇µh,∇ηh

)
Ωhi

as

the discrete bilinear form associated with (1.1), and (µ, η)X is the standard L2(X) inner
product, where X is an arbitrary domain.

1.3. Mathematical background. In our report, we use the Poisson equation as our
prototypical boundary value problem.{

∇ · (ki(x)∇ui) = fi on Ωi
ui = 0 on ∂Ωi \ Γ,

(1.1)

i = 1, 2, subject to the appropriate interface conditions given by{
u1 − u2 = 0 on Γ

k1∂n1u1 + k2∂n2u2 = 0 on Γ.
(1.2)

Here, ki denotes tensor or constant material properties restricted to Ωi, and fi is a forcing
function with the same restriction. The system (1.1) and (1.2) give us what is often called
a Steklov–Poincaré in the domain decomposition literature [11].

1.3.1. Analytic extensions. A function is said to be analytic if the function can be
represented by a power series locally at every point in the domain. It is well known that
analytic functions can be uniquely extended to a larger domain, sometimes Rn, using power
series approximations on limit points of the current domain. While all functions are not
analytic, certain classes of functions admit extensions. It is generally known that functions in
Lp(Ω) can be locally approximated using C∞c (Ω) functions [1], and because of this property,
it is possible to create an unique extension into some finite extended domain. The size of
this unique extension is often called the radius of extension, and it is inversely proportional
to the smoothness of the function in some neighborhood containing the boundary of the
domain. The method described in this report relies on smoothness of the solution near Γ,
so that the radius of extension is large enough to couple with the adjoining noncoincident
interface. An analysis of the size of the extension will be discussed in a future work, For the
time being, uniqueness and existence of a sufficiently large local extension is assumed.

1.4. Rationale for using extensions. In the analytical formulation of general in-
terface coupling problems, the problem is formulated such that the interfaces of Ω1 and
Ω2 match exactly. However, because numerical solutions of (1.1)-(1.2) requires some type
of domain discretization, such as meshing, often occurs that the discrete interfaces do not
match exactly. One example of this is when Ω1 and Ω2 are meshed separately. This typi-
cally leaves voids and overlaps in the domain which do not exist in the analytical domains.
The fact that the analytical solution exists in the void regions suggests that there may be
a method to approximate the solution in the voids. Herein lies the premise of our method:
to approximate the solution across the voids of the discrete interface by extension of the
discrete solution.

16 New Developments in Using Schwarz Methods

(a) Coincident Interface (b) Noncoincident Interfaces

1.5. Coupling mismatched interfaces. For now, let us assume that we are solving
BVPs exactly on Ωi = Ωhi with Γi = Γhi with i = 1, 2. Let us denote ũi as the solution
on these domains with noncoincident interfaces, and ui to be the “true” solution, e.g, the
solution of the matching interface coupling.In general we cannot couple the trace of ũ1 and
ũ2 directly because Γh1 6= Γh2 . The same issue exists with the natural boundary conditions
ki∂n1 ũ

h
i

∣∣
Γi

, i = 1, 2. To remedy this problem, we choose to use extension operators to extend
the values of ũ2 to Γ1 and k1∂n1 ũ1 to Γ2. The hybrid formulation for the noncoincident
interface problem becomes

∇ · (ki(x)∇ũi) = Eifi on Ωi

ũi = 0 on
⋃
i=1,2

∂Ωi \ Γi, (1.3)

i = 1, 2, subject to {
ũ1 − E2ũ = 0 on Γ1

E1k1∂n1E1ũ1 + k2∂n2 ũ2 = 0 on Γ2.
(1.4)

If we are solving the same boundary value problem on both Ω1 and Ω2, we see analytically
that the above hybrid formulation will give us the exact solution since the overlapping ex-
tensions are equivalent. Consequently, this formulation provides an appropriate foundation
for a mesh repair method.

However, if we choose to solve different BVPs on Ω1 and Ω2, there will be an error
associated with the interface conditions (1.4), since we are enforcing continuity of ũ1 and
ũ2 on Γ1 and continuity of the natural boundary conditions on Γ2. Because Γ1 and Γ2 are
separated by a gap, we assume that ||ui − ũi||0,Γi ≤ Mi,1ε, where ε = sup min

x∈Γ1,2,x′∈Γ2,1

|x − x′|
is the maximum distance of the nearest points on Γ1 and Γ2, Mi,1 is a positive constant.
Similarly, we expect ||ki∂niui − ki∂ni ũi||0,Γi ≤Mi,2ε.

Since it is most common to use piecewise linear functions to approximate Γhi in finite
element approximations, we will assume that ε < Kh2 [16], where h is the maximum diame-
ter of the approximating elements of Γhi . Because the solution of elliptic PDEs are bounded
above by its data, we expect

||ui − ũhi ||0,Ωhi ≤ Cih
2 (1.5)

J. Cheung, P. Bochev, and M. Perego 17

Fig. 1.1: Matching various problems between fine and coarse meshes across gaps between
discrete parabolic interfaces using Taylor series extensions

(a) Linear patch test (b) Solution of mesh repair prob-
lem

(c) Solution of transfer problem

for our approximation. Since piecewise linear finite element methods are second order ac-
curate in the L2(Ωi) norm, we see that the error induced by this formulation is within the
discretization error of the linear piecewise finite element method. Our numerical exper-
iments confirm the error behavior supplied by this heuristic argument. A more rigorous
analysis will be provided in a later publication.

1.5.1. Constructing a local extension. It is well known that the weak solution of
the second order elliptic partial differential equation has H1(Ω) regularity, with possiblility
of higher regularity [6]. Because H1(Ωi) is the completion of C∞c (Ωi) functions with respect
to the H1(Ωi) norm, the construction of a local extension using Taylor series is defined. For
every point x ∈ Γ1, the Taylor series extension is defined as.

E2u2(x) = u2(x′) +∇u2(x′) · (x− x′) + (x− x′)T∇∇u2(x′)(x− x′) + · · · (1.6)

where the points x′ are chosen such that x′ = arg min
x′∈Γ2

|x − x′|. Similarly, for every point

x′ ∈ Γ2

E1u1(x′) = u1(x) +∇u1(x) · (x− x′) + (x− x′)T∇∇u1(x)(x− x′) + · · · (1.7)

where x = arg min
x∈Γ1

|x− x′| for every point x′.

We define the linear finite element extensions by

Eh1 uh1 (x′q) = uh1 (xp) +∇uh1 (xp) · (x′q − xp)

Eh2 uh2 (xp) = uh2 (x′q) +∇uh2 (x′q) · (xp − x′q)
(1.8)

where the vertices xp ∈ Γh1 are the nearest neighbors of the vertices x′q ∈ Γh2 . Assuming
that Ωi = Ωhi , we see that

E1u1(x′q)− Eh1 uh1 (x′q) = [u1(xp)− uh1 (xp)] + [∇u1(xp)−∇uh1 (xp)] · (x′q − xp)

+Q2|x′q − xp|2
E2u2(xp)− Eh2 uh2 (xp) = [u2(x′q)− uh2 (x′q)] + [∇u2(x′q)−∇uh2 (x′q)] · (xp − x′q)

+Q1|xp − x′q|2.

(1.9)

18 New Developments in Using Schwarz Methods

By taking the L2(Γi) norm, and using finite element error bounds, we get

||E1u1 − Eh1 uh1 ||0,Γ2 ≤ A1h
2
1 + sup |x′q − xp|B1h+ C1|x′q − xp|2

||E2u2 − Eh2 uh2 ||0,Γ1 ≤ A2h
2
2 + sup |xp − x′q|B2h+ C2|xp − x′q|2.

(1.10)

Finally, since we assume that sup |x′q − xp| = ε ≤Mh2, we arrive at our final result

||E1u1 − Eh1 uh1 ||0,Γ2 ≤ K1h
2
1

||E2u2 − Eh2 uh2 ||0,Γ1 ≤ K2h
2
2.

(1.11)

The above inequality suggests that the error of the extension has the same order accuracy
as the linear piecewise approximation.

1.5.2. Coupling algorithm. To solve the hybrid formulation (1.3), we use a Dirichlet-
Neumann iterative method [11, 17] to transfer data between the two domain interfaces.

Algorithm 1. Dirichlet-Neumann with Extensions
1. Denote {xp}Pp=1 as the set of nodes on Γh1 and {xq}Qq as the set of nodes on Γh2 .
2. For every xp ∈ Γh1 find the nearest node xq = arg min

xq

|xp − xq|.

3. Begin with an initial Dirichlet guess θ(0)
1 .

4. For k = 0, 1, 2, . . .
(a) Solve ah1 (uh(k)

1 , vh1) = (fh1 , v
h
1)Ωh1

with uh(k)
1

∣∣
Γh1

= θ
(k)
1 .

(b) Construct Eh1 uh(k)
1

∣∣
Γh2

.

(c) Set g(k)
2 = ∂n1E1k1u

h(k)
1

∣∣
Γh2

.

(d) Construct Eh2 uh(k)
2

∣∣
Γh1

.

(e) Solve ah2 (uh(k)
2 , vh2) = (fh2 , v

h
2)Ωh2

− (g(k)
2 , vh2)Γh2

.

(f) Set θ(k+1)
1 = E2uh(k)

2

∣∣
Γh1

.
This algorithm is simple to implement since it requires only the additional step of

constructing the local extension on top of the already existing nearest neighbor search
algorithm. The test function derivatives required to compute the local extension is readily
available in many finite element codes.

1.6. Numerical results. This section will focus on the numerical results of the method
described in Section 1.5. The results will be presented in three parts: successful recovery of
a linear solution, convergence of mesh tying solution, and the convergence of the solution
of a transfer problem with a noncoincident interface. For all numerical results, we present
results for coincident interfaces, overlapping interfaces, and gap interfaces. Demonstrating
convergence for complete overlaps and complete voids is sufficient to show that this method
will succeed in coupling general noncoincident interface problems. The size of the gap and
overlap is taken to be h2

max, where hmax is the diameter of the largest element in {Ωh1 ,Ωh2}.
This is to mimic the error of discretizing the exact interface. It should be noted that in the
overlap case, the “extension” is just an approximation of the solution at an interior point
of uh1 on Γh2 and uh2 on Γh1 . We demonstrate that if Algorithm 1 is applied to the overlap
case, we are still able to recover our coupled solution. This observation also demonstrates
the low implementation complexity of our method since we need not worry if a given node
at the discrete interface is an overlapping node or a void node.

1.6.1. Linear patch test. Successful recovery of a linear solution is a minimum re-
quirement for a coupling scheme using piecewise linear elements. Many existing methods

J. Cheung, P. Bochev, and M. Perego 19

Fig. 1.2: Convergence rates of the mesh repair and noncoincident transfer problem. The
blue lines represent ||u − uh||1,Ω data and the red lines represent ||u − uh||0,Ω data. The
thick lines represent the first and second order reference lines.

(a) Mesh Repair

(b) Noncoincident Transfer Problem

20 New Developments in Using Schwarz Methods

Fig. 1.3: Illustration of linear patch test results.

(a) Linear patch test with gap (b) Linear patch test with overlap

used in engineering applications do not pass this so-called “patch test”. However, because
we extend our solution using Taylor series, it is apparent that we are able to recover any
linear function since we use the gradient information in our extension of uhi .

1.6.2. Mesh repair problem. In this test problem, we consider the manufactured
solution u(x, y) = sin(πx) sin(πy), given as the solution of{

−∆u = −π2 sin(πx) sin(2πy)− 4π2 sin(πx) sin(2πy) in Ω
u = 0 on ∂Ω.

(1.12)

We decompose and then discretize the domain Ω into Ωh1 and Ωh2 , where both subdomains
are “joined” by noncoincident interfaces, Γh1 and Γh2 . Here, we choose Ωh1 ∪ Ωh2 = [−1, 1] ×
[−0.5, 0.5]. A parabolic interface given by the parametrization (x = −t2, y = t), t =
[−0.5, 0.5], was used in this test problem. It is observed that our method has first order
convergence in the H1(Ω) and L2(Ω) norm. However, while second order convergence in
L2(Ω) is optimal, we see the same behavior for coincident interfaces. This implies that
the sub-optimal convergence is caused not by our extension, but the Dirichlet-Neumann
iterative method itself. It is also observed that the slope and the additive constants of the
log-plot for the error plot are similar for the gap, overlap, and coincident test problems.
This suggests that the error of the extension overlap is negligible compared to the overall
error of the approximation.

1.6.3. Transfer problem with noncoincident interfaces. For this test, we couple
−∆u1 = 100 in Ω1

u1 = 0 on ∂Ω1 \ Γ
u1 = u2 on Γ

−10∆u2 = 100 in Ω2

u2 = 0 on ∂Ω2 \ Γ
10∂n2u2 = −∂n1u1 on Γ.

(1.13)

Of course, because we discretize Ω1 and Ω2 separately, our subomdains are again “joined”
by noncoincident interfaces Γh1 and Γh2 . Here, the problem domain is Ωh1 ∪ Ωh2 = [−1, 1] ×

J. Cheung, P. Bochev, and M. Perego 21

Fig. 1.4: Illustration of solutions of mesh repair problem

(a) Solution with gap (b) Solution with overlap

[0, 1]. Though it is possible to couple curved interfaces, as illustrated in Figure 1.2(c),
a straight interface is used for this test problem to avoid difficulties with differing mesh
discretizations of curved interfaces when comparing the coarse approximation to a fine-mesh
solution. The approximation is compared to a fine-mesh solution computed using hmax =
1/20 piecewise quartic elements. We observe optimal finite element convergence, that is, first
order convergence in H1(Ω) and second order in L2(Ω). While the convergence rates may
be optimal, it is shown in Figure 1.3(b) that the additive constants of the convergence lines
are different. This shows that both gap extensions and overlap errors have an additional
multiplicative error. This implies that there is some sort of overlap error that contributes
to the total error of the scheme. This behavior was predicted in Section 1.5.

1.7. Concluding remarks. It was demonstrated in this work that extensions can
be used to solve general noncoincident interface coupling problems by using a Dirichlet-
Neumann method. While this method does have an extra error of overlapping the extensions,
this error does not hinder the convergence of the coupled solution for general mismatched
O(h2) interface approximations. We have also shown that this method passes the linear
patch test, and thus spurious oscillations are less likely to occur when using this method.
Furthermore, we have shown that this coupling method essentially has the same convergence
properties as the standard Dirichlet-Neumann iterating method with coincident interfaces.

While there are many advantages to using our method, there are also some limitations.
It was observed that the method becomes unstable if the size of the gap exceeds a certain
length, τ , where τ >> h2; however, for all cases discussed in this report, the method was
completely stable. In practice, this may not be a big issue since the size of the gap is often
O(h2

max). The second limitation is the coupling of solutions that have non-smooth behavior
near the interface. In this case, there may not be a valid discrete extension, and we are
left with the noncoincident interface to couple. These problems will be addressed in future
works.

In conclusion, our work suggests that application of local extensions bears significant
promise in general noncoincident coupling problems since it is easy to implement and it

22 New Developments in Using Schwarz Methods

Fig. 1.5: Illustration of solution of transfer problem

(a) Solution with gap (b) Solution with overlap

removes many difficulties that arise from existing coupling methods while also retaining
the accuracy of the Dirichlet-Neumann iterative method for coincident interface coupling
problems.

1.8. Future directions. The work presented in this report demonstrates the ability
to use extensions to couple noncoincident interfaces. While the Poincaré-Steklov framework
is shown to be effective in practical cases, it really only demonstrates the preliminary effec-
tiveness of using extensions in the noncoincident interface coupling setting. In the future, we
will explore using an optimal control based coupling framework to minimize the functional

min
u1,u2

J [u1, u2] =
1
2

∫
Γ

(E1u1 − E2u2)2
dΓ +

β

2

∫
Γ

(∂n1E1u1 + ∂n2E2u2)2
dΓ (1.14)

subject to
−k1∆u1 = f1 in Ω1

k1∂n1u1 = g1 on γ1

u1 = 0 on ∂Ω1 \ γ1

−k2∆u2 = f2 in Ω2

k2∂n2u2 = g2 on γ2

u2 = 0 on ∂Ω2 \ γ2,

(1.15)

where β is a penalization parameter, γi denotes the “virtual” interface defined as ∂Ωi ∩ γi,
and Γ denotes the “true” interface where we wish to enforce continuity of the coupled
solution. The flexibility of this formulation allows us to choose the true interface to be
one of the virtual interfaces, which will be useful if one of the solutions is not effectively
extensible. This formulation eliminates extension overlaps and makes convergence analysis
simpler by posing the coupling problem in a well-studied optimization framework. We will
also analyze the stability and accuracy of the extensions as well as demonstrate the ability of
the extension to reproduce any p-order polynomial with (p+1)-order finite element methods.
The uniqueness of the extension must also be proven in order to justify rigorously the use
of extensions in the coupling framework. Finally, we will apply this formulation to fluid-
structure interactions to demonstrate its effectiveness in preserving forces and matching
displacements.

J. Cheung, P. Bochev, and M. Perego 23

2. The Classical Schwarz Method for Coupling Classical Density Functional
Theory and the Poisson Nernst Planck Equation.

2.1. Introduction. The premise of Classical Density Functional Theory (cDFT) relies
on the observation that the behavior of hard sphere particles can be modeled by minimizing
a total energy functional with respect to the number densities in the system. While the for-
mulation of cDFT may accurately describe many features of fluid particle particle behavior,
computing its solution is not trivial. The complexity of the first variation with respect to
number densities is proportional to the number of physics terms included in the formula-
tion. The resulting model is a highly nonlinear system of integral and differential equations.
Also while, cDFT is very useful for capturing oscillations and nonlocal effects of the number
density in a small region near a wall, its usefulness diminishes outside this region. For this
reason, we are interested in developing a method that couples this nonlocal model with a
local model away from a wall to reduce the cost of determining the microscale behavior of
a fluid in a larger domain. In this report, we present a preliminary result from coupling
nonequilibrium steady-state cDFT with the simpler Poisson-Nernst-Planck equations using
the classical alternating Schwarz method in one dimension.

2.2. Mathematical background. The steady-state Poisson-Nernst-Planck
(PNP) equation is given by

∇ · (Dαρα∇βµα) on Ωp

−∇ · (ε(x)∇φ) =
1
ε0

N∑
α

ezαρα on Ωp
(2.1)

where Ωp denotes the PNP domain, α is the particle index, ρα is the density, φ is the
electrostatic potential, Dα is the diffusion constant, e is the electron charge, and zα is the
valency of the particle. We have defined βµα = log(ρα) + zαφ as a placeholder variable
to represent the chemical potential. This model describes the drift-diffusion behavior of
point charge particles in a fluid through their electrostatic interactions. Dirichlet boundary
conditions are usually presecribed for ρα and φ for (2.1).

For brevity, we omit a detailed review of cDFT and refer the reader to [15]. In a broad
sense, the steady-state nonequilibirum cDFT formulation generalizes the PNP model into
the nonlocal setting by adding nonlocal charged hard-sphere properties of particles in the
fluid. The principle distinction between the PNP formulation and the cDFT formulation is
that the chemical potential is defined as

βµα = log(ρα) + βV +
δβF ex

δρα
+ zαφ, (2.2)

where F ex are the excess free energy contributions of the system determined by a grand
canonical ensemble functional, V is the external potential, and β = (kbT)−1, where kb is
the Boltzmann constant, and T is the absolute temperature. Essentially, the steady-state
nonequilibrium formulation of cDFT is (2.1) using (2.2) coupled with an integral formulation
of δβF

ex

δρα
. In most applications, Dirichlet boundary conditions are prescribed for µα and φα.

Because of the nonlocal equation of the density equation, a volume constraint must be
enforced for ρα in the interaction region.

2.3. Schwarz Method. Numerical simulations suggest that solutions of cDFT and
PNP models are almost indistinguishable in regions that do not contain nonlocal behavior
in the cDFT solution. This motivates our approach to use the Schwarz method as a coupling
mechanism between cDFT and PNP through an overlap region. For the remainder of the

24 New Developments in Using Schwarz Methods

report, the problem domains will be denoted Ωp and Ωd for the PNP and cDFT domains
respectively. Likewise Γp and Γd will be the part of the boundaries that receive Dirichlet
information from the adjacent overlapping domain. In addition, we will denote Ω̃d to be
the part of the interaction region of the cDFT domain that receives volume constraint
information from the PNP solution. Finally, we denote Ωo = Ωp ∩Ωd to be the overlapping
region. The algorithm used to couple the PNP and DFT solutions is presented below.
Tramonto was used to carry out the computations for obtaining numerical solutions to the
cDFT and PNP equations.

Algorithm 2. cDFT-PNP Coupling using Schwarz
1. Set Dirichlet boundaries {ρp,(0)

α , φp,(0)}∣∣
Γp

= {θραp , θφp} as initial guesses.

2. Solve PNP equation for {ρp,(0)
α , φp,(0)}

3. Until convergence:
(a) Set ρd,(k+1/2)

α

∣∣
Ω̃p

= ρ
d,(k)
α

∣∣
Ω̃d∩Ωp

.

(b) Set φd,(k+1/2)
∣∣
Γd

= φp,(k)
∣∣
Γd∩Ωp

.

(c) Solve cDFT equation for {ρd,(k+1/2)
α , φd,(k+1/2), µ

d,(k+1/2)
α }

(d) Set {ρp,(k+1)
α , φp,(k+1)}∣∣

Γp
= {ρd,(k+1/2)

α , φd,(k+1/2)}∣∣
Γd

(e) Solve PNP equation for {ρp,k+1
α φp,(k+1)}.

In the above algorithm, (·)d denotes a cDFT variable, and (·)p denotes a PNP variable.

2.4. Preliminary numerical results and observations. In the test problem, we
solve the PNP equation in x ∈ [0, 40] and the DFT equation in x ∈ [35, 50] with the
overlap region being x ∈ [35, 40]. We implement “wall” boundary conditions on the right
boundary to induce nonlocal oscillations near the right domain. In mathematical terms,
the wall conditions means that we have set ρdα = 0 in the interaction region in x > 50 and
µdα(50) = −∞. This also means that the particle exists only at radius-length away from the
wall. We also set φd(50) = 4. On the right domain, ρpα(0) = 0.2 and φp(0) = 0. In this test
problem, we have placed a +1 charge on the α = 1 species, and a −2 charge on the α = 2
species. While this test problem may not have any physical significance, it highlights, in
the abstract sense, the ability to perform a cDFT-PNP coupling using the classical Schwarz
method.

Fig. 2.1: The coupled solution after 10 iterations.

(a) cDFT-PNP density (b) cDFT-PNP electrostatic potential

It was found that for this test problem, and for other 1D test problems that we can couple

J. Cheung, P. Bochev, and M. Perego 25

the density and electric potentials; however, the chemical potentials remain uncoupled.
This is expected due to the general non-uniqueness of potentials and due a current lack of
a coupling mechanism to match chemical potentials from the PNP solution to the cDFT
solution. This is partly due to the fact that in PNP, the chemical potential is not treated
as a variable, while the opposite is true in cDFT.

2.5. Concluding remarks. In this report, we have demonstrated the possibility of
coupling cDFT and PNP using the classical Schwarz method. While we have only presented
the a preliminary result in 1D, we believe that this method will still work in 2D and 3D due
to the visibly indistinguishable behavior of cDFT and PNP solutions in regions that do not
exhibit nonlocal effects in the cDFT solution. This work is an ongoing endeavor, and we
hope that in the near future, a 2D cDFT-PNP coupling method will be implemented using
Tramonto.

3. Acknowledgments. The authors would like to thank Max Gunzburger for his
guidance during the spring semester that lead to the ideas discussed in the first part of
this report. We would also like to acknowledge Paul Kuberry for his helpful instruction
on using FreeFem++’s more technical features and for helpful discussions on the subject of
interface coupling. In addition, we would like to thank Amalie Frischknecht for guiding us
on classical Density Functional Theory and the Tramonto software. Finally, we would like
to thank Michael Parks for reviewing this report.

Part of this research was carried under the auspices of the Collaboratory on Mathematics
for Mesoscopic Modeling of Materials (CM4), funded by the DOE Office of Science Advanced
Scientific Computing Research (ASCR) Applied Mathematics program.

REFERENCES

[1] D. Day and P. Bochev, Analysis and computation of a least-squares method for consistent mesh
tying, Journal of Computational and Applied Mathematics, 218 (2008), pp. 21–33.

[2] A. De Boer, A. Van Zuijlen, and H. Bijl, Review of coupling methods for non-matching meshes,
Computer methods in applied mechanics and engineering, 196 (2007), pp. 1515–1525.

[3] A. de Boer, A. H. van Zuijlen, and H. Bijl, Comparison of conservative and consistent approaches
for the coupling of non-matching meshes, Computer Methods in Applied Mechanics and Engi-
neering, 197 (2008), pp. 4284–4297.

[4] Q. Du and M. D. Gunzburger, A gradient method approach to optimization-based multidisciplinary
simulations and nonoverlapping domain decomposition algorithms, SIAM journal on numerical
analysis, 37 (2000), pp. 1513–1541.

[5] M. DElia and P. B. Bochev, Optimization–based coupling of nonlocal and local diffusion models, in
MRS Proceedings, vol. 1753, Cambridge Univ Press, 2015.

[6] L. Evans, Partial differential equations, American Mathematical Society, Providence, RI,, 19 (2010).
[7] L. J. D. Frink and A. G. Salinger, Two-and three-dimensional nonlocal density functional theory

for inhomogeneous fluids: I. algorithms and parallelization, Journal of Computational Physics,
159 (2000), pp. 407–424.

[8] M. Gunzburger, J. Peterson, and H. Kwon, An optimization based domain decomposition method
for partial differential equations, Computers & Mathematics with Applications, 37 (1999), pp. 77–
93.

[9] F. Hecht, New development in FreeFem++, Journal of Numerical Mathematics, 20 (2012), pp. 251–
266.

[10] E. H. Lieb and M. Loss, Analysis, volume 14 of graduate studies in mathematics, American Mathe-
matical Society, Providence, RI,, 4 (2001).

[11] T. Mathew, Domain decomposition methods for the numerical solution of partial differential equa-
tions, vol. 61, Springer Science & Business Media, 2008.

[12] K. Park, C. Felippa, and G. Rebel, A simple algorithm for localized construction of non-matching
structural interfaces, International Journal for Numerical Methods in Engineering, 53 (2002),
pp. 2117–2142.

[13] M. Parks, L. Romero, and P. Bochev, A novel Lagrange-multiplier based method for consistent
mesh tying, Computer methods in applied mechanics and engineering, 196 (2007), pp. 3335–3347.

26 New Developments in Using Schwarz Methods

[14] M. L. Parks, P. B. Bochev, and R. B. Lehoucq, Connecting atomistic-to-continuum coupling and
domain decomposition, Multiscale Modeling & Simulation, 7 (2008), pp. 362–380.

[15] R. Roth, Fundamental measure theory for hard-sphere mixtures: a review, Journal of Physics: Con-
densed Matter, 22 (2010), p. 063102.

[16] G. Strang and G. J. Fix, An analysis of the finite element method, vol. 212, Prentice-Hall Englewood
Cliffs, NJ, 1973.

[17] A. Toselli and O. Widlund, Domain decomposition methods: algorithms and theory, vol. 3, Springer,
2005.

CCR Summer Proceedings 2015 27

DEVELOPMENT OF HIGHER ORDER STRONG STABILITY
PRESERVING IMPLICIT-EXPLICIT RUNGE KUTTA METHOD

SIDAFA CONDE∗ AND JOHN N. SHADID†

Abstract. Strong Stability Preserving (SSP) numerical time integrators for initial value ODEs pre-
serves the monotonicity properties of the Forward Euler method in any of the norm, semi-norm, or convex
functionals. In this paper, the construction and analysis of Strong Stability Preserving Implicit-Explicit
(IMEX) Runge–Kutta (RK) methods for the time integration of an additive initial value problem is dis-
cussed. The goal of this study is to seek IMEX methods that have additional SSP stability properties for
the implicit integrator as well as the overall IMEX method. Most previous high-order methods only have
the explicit part be SSP, while enforcing the implicit scheme to be L-Stable. The new methods developed
ensure the explicit and implicit methods are SSP, while enforcing the overall scheme to be SSP, additionally
we constrain the implicit part to be L-stable. The new methods were constructed in search of sub-optimal
SSP methods with the desired properties for the implicit and overall IMEX integrator. Though there were
no overall SSP fourth order L-Stable IMEX methods, methods of order p ≤ 4 are investigated. The accuracy
and stability of these results is demonstrated on a convection-diffusion system and on a coupled first-order
wave equation system.

1. Introduction. This work is concerned with the numerical solution of the initial
value problem

y′(t) = f(y(t)) + g(y(t)), y(t0) = y0 t ≥ t0 (1.1)

Here f is slow and g is fast with respect to the desired time scale of interest. Furthermore,
it is assumed that ‖ · ‖ is a convex functional, such that for any t0 and any solution y(t) to
(1.1), the following monotonicity property is satisfied

‖y(t)‖ ≤ ‖y(t0)‖, ∀t ≥ t0 (1.2)

It is assumed that the semi-discrete form of (1.1) after spatial discretization is represented
as

y′(t) = F (y) +G(y), y(0) = y0 (1.3)

Where y0 ∈ Rm, and F : Rm → Rm, G : Rm → Rm such that (1.1) has a unique solution
y : [t0,∞) → Rm. System (1.3) is then solved using a numerical ODE solver. Numerical
methods for (1.3) compute a sequence of solutions y1,y2, · · · approximating the true solution
at times (t0 + ∆t), (t0 + 2∆t), · · · . This study considers the development of a class of high
order additive Implicit-Explicit Runge–Kutta methods for which the numerical solution
satisfies the monotonicity property, the discrete form of (1.2) is

‖yn+1‖ ≤ ‖yn‖ (1.4)

A common approach for such methods is to assume that the initial value problem (1.3)
is monotone under Forward Euler (FE) integration, subject to some step size restrictions:

‖y + τ0F (y)‖ ≤ ‖y‖, ∀y ∈ Rm, for 0 ≤ τ0 ≤ ∆TFE (1.5)
‖y + τ̃0G(y)‖ ≤ ‖y‖, ∀y ∈ Rm, for 0 ≤ τ̃0 ≤ ˜∆TFE (1.6)

The term Strong Stability Preserving (SSP) is used to denote any method that gives

∗University of Massachusetts Dartmouth, sconde@umassd.edu
†Sandia National Laboratories, jnshadi@sandia.gov

28 High Order IMEX

a solution satisfying the monotonicity condition (1.4) whenever applied to a initial value
problem (1.3) which satisfies the Forward Euler conditions (1.5)-(1.6).This can be shown to
hold under a step size restriction of the form

∆t ≤ min{C∆TFE , C̃ ˜∆TFE} (1.7)

where the factor C, C̃, referred to as the SSP coefficient corresponding to F,G terms respec-
tively, depends only on the numerical method.

An s-stage Additive Runge–Kutta (ARK) method is defined by two s× s real matrices
A, Ã and two real vectors b, b̃ such that:

Yi = yn + h

s∑
j=1

aijFj + h

s∑
j=1

ãijGj , i = 1, . . . , s

yn+1 = yn + h

s∑
i=1

biFi + h

s∑
i=1

b̃iGi, i = 1, . . . , s

(1.8)

where Yi are the intermediate values of the solution y at the time tn + cih and Fi =
F (Yi), Gi = G(Yi), ci =

∑s
j=1 aij , c̃i =

∑s
j=1 ãij .

The Runge–Kutta (RK) method (A, b) represents an explicit method used for the nons-
tiff part F , and RK method (Ã, b̃) represents an implicit method, often a Diagonally Implicit
RK (DIRK), used for the stiff part G in (1.8) [1, 2, 14]. The compact form of (1.8) is written

as, with the following definition K =
[
A 0
bT 0

]
, K̃ =

[
Ã 0
b̃T 0

]
Y = e⊗ un + h(K⊗ I)F + h(K̃⊗ I)G (1.9)

Where ⊗ denotes the Kronecker product. Notice (1.9) is the same as [9, equation 1.7].
Additive IMEX RK methods have been demonstrated to improve the efficiency of nu-

merical simulations in various applications. Most often, the methods are constructed with
the aim of optimizing the region of absolute monotonicity (AM) for the explicit method,
maximizing the SSP coefficients C, while enforcing L-Stability for the implicit scheme. In
[10], the authors demonstrated a more efficient second order scheme with additional prop-
erties which ”promise reliable and efficient simulations” at the cost of reducing the SSP
coefficient from the optimum. In [10] the design philosophy that is described focuses on the
following properties:

1. IMEX RK scheme should be of at least least second order; error constant should be
small;

2. IMEX RK scheme, (A, b) and (Ã, b̃), should be SSP with C, C̃ > 0
3. Implicit scheme (Ã, b̃) should maintain L-Stability; stability region should contain

a large subinterval of the negative real axis [−z, 0], z > 0
4. Explicit scheme (A, b): stability region should contain a large subinterval of the

negative real axis [−z, 0], z > 0; and also the imaginary axis [−iw, iw], w > 0
5. Both methods: stability function should be nonnegative for a large interval of neg-

ative real axis [−z, 0], z > 0;
6. Region of AM of the IMEX RK methods should be large

In this study these ideas are extended in search of a higher order IMEX-RK method p ≤
4; where the explicit and the implicit are SSP. Two classes of implicit methods were searched:
Singly-Diagonally Implicit Runge–Kutta (SDIRK) and Diagonally Implicit Runge–Kutta
(DIRK). Often, the coefficients of the IMEX methods are further restricted to rational

S. Conde and J.N. Shadid 29

numbers. This study does not enforce this restriction. Previous studies [21, 2, 19, 10] only
exhibit order conditions for p ≤ 3 Additive RK (ARK); the fourth order (p = 4) conditions
are listed in Table 2.1.

The structure of the paper is organized as follows: in Section 2, a short review of SSP
theory is presented; the necessary order conditions for p ≤ 4 are presented in Section 2.1; the
relationship between Butcher and Shu-Osher form is presented Section 2.3; the numerical
optimization problem is described in Section 2.4. Some newly constructed methods are
presented in Section 3; numerical results are presented in section 4; and finally the conclusion
is presented in Section 5.

2. Review of known concepts. The SSP coefficient is for most known RK methods
not very large; for a broad class of explicit general linear methods, it is never greater than the
number of stages of the method [15]. For many classes of implicit methods it is conjectured
to be bounded by twice the number of stages [12, 6, 16].

2.1. Order Condition. The order p of an Additive Runge–Kutta method is deter-
mined by necessary conditions imposed on its coefficients aij , bi, ci, ãij , b̃i, c̃i. The con-
ditions for p ≤ 4 are summarized in Table 2.1 with the following additional definition:
C = diag(ci), C̃ = diag(c̃i), e = (1, 1, · · · , 1) ∈ Rs.

p (#) order conditions

1 (2) bTe = 1, b̃
T
e = 1

2 (4) bT c = 1/2, b̃
T
c̃ = 1/2, bT c̃ = 1/2, b̃

T
c̃ = 1/2

3 (16) b̃
T
Ac̃ = 1/6, b̃

T
Ac = 1/6, b̃(c · c̃) = 1/3, b̃(c · c) = 1/3

b̃
T
Ãc̃ = 1/6, b̃

T
Ãc = 1/6, b̃(c̃ · c) = 1/3, b̃(c̃ · c̃) = 1/3

bTAc = 1/6, bTAc̃ = 1/6, b(c · c̃) = 1/3, b(c · c) = 1/3
bT Ãc̃ = 1/6, bT Ãc = 1/6, b(c̃ · c) = 1/3, b(c̃ · c̃) = 1/3

4 (64) bT (ccc) = 1/4, bT (ccc̃) = 1/4, bTCAc = 1/8, bTCAc̃ = 1/8
bT (cc̃c) = 1/4, bT (cc̃c̃) = 1/4, bTCÃc = 1/8, bTCÃc̃ = 1/8
bT (c̃cc) = 1/4, bT (c̃cc̃) = 1/4, bT C̃Ac = 1/8, bT C̃Ac̃ = 1/8
bT (c̃c̃c) = 1/4, bT (c̃c̃c̃) = 1/4, bT C̃Ãc = 1/8, bT C̃Ãc̃ = 1/8
b̃
T

(ccc) = 1/4, b̃
T

(ccc̃) = 1/4, b̃
T
CAc = 1/8, b̃

T
CAc̃ = 1/8

b̃
T

(cc̃c) = 1/4, b̃
T

(cc̃c̃) = 1/4, b̃
T
CÃc = 1/8, b̃

T
CÃc̃ = 1/8

b̃
T

(c̃cc) = 1/4, b̃
T

(c̃cc̃) = 1/4, b̃
T
C̃Ac = 1/8, b̃

T
C̃Ac̃ = 1/8

b̃
T

(c̃c̃c) = 1/4, b̃
T

(c̃c̃c̃) = 1/4, b̃
T
C̃Ãc = 1/8, b̃

T
C̃Ãc̃ = 1/8

bTA(cc) = 1/12, bTA(cc̃) = 1/12, bT (AA)c = 1/24, bT (AA)c̃ = 1/24
bTA(c̃c) = 1/12, bTA(c̃c̃) = 1/12, bT (AÃ)c = 1/24, bT (AÃ)c̃ = 1/24
bT Ã(cc) = 1/12, bT Ã(cc̃) = 1/12, bT (ÃA)c = 1/24, bT (ÃA)c̃ = 1/24
bT Ã(c̃c) = 1/12, bT Ã(c̃c̃) = 1/12, bT (ÃÃ)c = 1/24, bT (ÃÃ)c̃ = 1/24
b̃
T
A(cc) = 1/12, b̃

T
A(cc̃) = 1/12, b̃

T
(AA)c = 1/24, b̃

T
(AA)c̃ = 1/24

b̃
T
A(c̃c) = 1/12, b̃

T
A(c̃c̃) = 1/12, b̃

T
(AÃ)c = 1/24, b̃

T
(AÃ)c̃ = 1/24

b̃
T
Ã(cc) = 1/12, b̃

T
Ã(cc̃) = 1/12, b̃

T
(ÃA)c = 1/24, b̃

T
(ÃA)c̃ = 1/24

b̃
T
Ã(c̃c) = 1/12, b̃

T
Ã(c̃c̃) = 1/12, b̃

T
(ÃÃ)c = 1/24, b̃

T
(ÃÃ)c̃ = 1/24

Table 2.1: Order conditions of Additive IMEX Runge–Kutta methods for p ≤ 4.

30 High Order IMEX

Due to the complexity of the necessary order conditions that must be satisfied to ob-
tain higher order methods, it is common to make assumptions which reduce the number of
equations. Under each assumption, we obtain different classes of modified methods: Type-G
refer to methods which make no assumption on the coefficients of the scheme (Table 2.1);
Type-B refer to methods which assume that b = b̃ (Table 2.2); and Type-BC will refer to
methods for which the coefficients b = b̃ and c = c̃ (Table 2.3). After elimination of redun-
dancy, a similar order condition for p = 3 of Type-G, can be found in [2]. Furthermore, we
will refer to methods as follows: SSPq(s,r,p)-GBCLSM, where the letters have the following
meaning [10]:

q: order the explicit scheme
s: number of stages of explicit scheme
r: number of stages of implicit scheme
p: order of the IMEX scheme
’G’: Type-G method
’B’: Type-B method i.e b = b̃
’C’: Type-BC method i.e b = b̃ and c = c̃
’L’: L-stable
’S’: stability of the explicit part contains an interval on the imaginary axis
’M’: the IMEX method has a nontrivial region of absolute monotonicity

p (#) order conditions

1 (1) bTe = 1
2 (2) bT c = 1/2 bT c̃ = 1/2
3 (7) bTAc = 1/6, bTAc̃ = 1/6, b(c · c̃) = 1/3, b(c · c) = 1/3

bT Ãc̃ = 1/6, bT Ãc = 1/6, b(c̃ · c̃) = 1/3
4 (26) bT (ccc) = 1/4 bT (ccc̃) = 1/4, bTCAc = 1/8, bTCAc̃ = 1/8

bT (cc̃c̃) = 1/4, bTCÃc = 1/8, bTCÃc̃ = 1/8 bT C̃Ac = 1/8
bT C̃Ac̃ = 1/8 bT (c̃c̃c̃) = 1/4, bT C̃Ãc = 1/8, bT C̃Ãc̃ = 1/8

bTA(cc) = 1/12, bTA(cc̃) = 1/12, bT (AA)c = 1/24, bT (AA)c̃ = 1/24
bTA(c̃c̃) = 1/12, bT (AÃ)c = 1/24, bT (AÃ)c̃ = 1/24, bT Ã(cc) = 1/12
bT Ã(cc̃) = 1/12, bT (ÃA)c = 1/24, bT (ÃA)c̃ = 1/24, bT Ã(c̃c̃) = 1/12

bT (ÃÃ)c = 1/24, bT (ÃÃ)c̃ = 1/24

Table 2.2: Reduced order conditions (b = b̃) for p ≤ 4.

Methods developed in [10] correspond to Type-B under our classification. Similar as-
sumptions were made in [14] to make Type-BC methods attainable.

2.2. Radius and Regions of Absolute Monotonicity. For RK and IMEX RK,
the step size restrictions to obtain SSP or TVD methods are given, respectively, by the
Kraaijevanger radius and the region of absolute monotonicity.

Definition 2.1 ([9] Definition 2.1, [17] Definition 2.4). An s-stage RK method with
coefficient K is said to be absolutely monotonic (a.m) at a given point ξ ≤ 0 if the matrix
I − ξK is nonsingular and

(I − ξK)−1K ≥ 0 (2.1)
(I − ξK)−1e ≥ 0 (2.2)

S. Conde and J.N. Shadid 31

p order conditions

1 (1) bTe = 1, c = c̃
2 (1) bT c = 1/2
3 (3) bTAc = 1/6, bT Ãc = 1/6, bT c2 = 1/3
4 (9) bT c3 = 1/4, bTCAc = 1/8, bTCÃc = 1/8,

bTAc2 = 1/12, bT (AA)c = 1/24, bT (AÃ)c = 1/24
bT Ãc2 = 1/12, bT (ÃA)c = 1/24, bT (ÃÃ)c = 1/24

Table 2.3: Reduced order conditions (b = b̃, c = c̃) for p ≤ 4.

where e = (1, 1, · · · , 1)t ∈ Rs+1, and the vector inequalities are understood componentwise.
Further, the method is said to a.m. on a given set Ω ⊂ R if it is a.m. at each ξ ∈ Ω. The
radius of absolute monotonicity R(K) is defined by

R(K) = sup{r|r ≥ 0 and K is a.m on [−r, 0]} (2.3)

if there is no r > 0 such that K is a.m, on [−r, 0], we set R(K) = 0.
Definition 2.2 ([9] Defintion 2.2). An s-stage ARK IMEX method (K, K̃) is said to

be a.m at a given point (ξ, ξ̃) with ξ, ξ̃ ≤ 0 if the matrix I − ξK− ξ̃K̃ is invertible and

A(ξ, ξ̃) = (I − ξK− ξ̃K̃)−1K ≥ 0 (2.4)
Ã(ξ, ξ̃) = (I − ξK− ξ̃K̃)−1K̃ ≥ 0 (2.5)
e(ξ, ξ̃) = (I − ξK− ξ̃K̃)−1e ≥ 0 (2.6)

further, the additive method is said to be a.m on a given set Ω ∈ R2 if it is absolutely
monotonic at each (ξ, ξ̃) ∈ Ω

Definition 2.3 (Definition 2.3 [9]). The region of absolute monotonicity, denoted by
R(K, K̃) is defined by

R(K, K̃) = {(r, r̃)|r ≥ 0, r̃ ≥ 0, and (K, K̃) is a.m. on [−r, 0]× [−r̃, 0]} (2.7)

In [9, Proposition 2.11], the authors extended the results of [18, Lemma 4.4], and demon-
strated that to prove the monotonicity of an ARK method in the segment that connects
the origin and the point (−r,−r̃), it is enough to check the absolute monotonicity of the
method (K, K̃) at (−r,−r̃), and the nonnegativity of K and K̃.

Thus, the new methods are constructed such that the method (K, K̃) ≥ 0 satisfy the
order conditions listed in Section 2.1 and are absolutely monotonic at (−r,−r̃).

2.3. ARK methods in Shu-Osher representation. The derivation of monotonicity
is conceptually much easier when the ARK method is written in Shu-Osher form [9, 7]. The
canonical Shu-Osher representation of (1.8):

y(i) = viy(n) +
s∑
j=1

(
αijy(j) + ∆tβijF (y(j))

)
+

s∑
j=1

(
α̃ijy(j) + ∆tβ̃ijG(y(j))

)
y(n+1) = y(s+1)

(2.8)

32 High Order IMEX

For consistency, require that

1 =
s∑
j=1

αij +
s∑
j=1

α̃ij , 1 ≤ i ≤ s+ 1 (2.9)

The relation between the Shu-Osher form and the Butcher form is as follow:

(α)ij =

{
αij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s
0 j = s+ 1

(β)ij =

{
βij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s
0 j = s+ 1

(α̃)ij =

{
α̃ij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s
0 j = s+ 1

(
β̃
)
ij

=

{
β̃ij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s
0 j = s+ 1

Y = v̄y(n) +αY + ∆tβF + α̃Y + ∆tβ̃G, y(n+1) = Ys+1 (2.10)

where v̄ = I ⊗ v,α = I ⊗ α, α̃ = I ⊗ α̃,β = I ⊗ β, β̃ = I ⊗ β̃. Taking α, α̃ = 0 in Modified
Shu-Osher Form (2.10), and K = βij , K̃ = β̃ij , v̄ = e

Y = eun + ∆tKF + ∆tK̃G (2.11)

In general, K = (I −α− α̃)−1β, K̃ = (I −α− α̃)−1β̃ and (α+ α̃)e + v̄ = e
Definition 2.4 ([7] Zero-well-defined). A Runge–Kutta method is zero-well-defined if

the stage equations have a unique solution when the method is applied to the scalar initial
value problem

y′(t) = 0, y(t0) = y0.

We prove the monotonicity property (1.4) using the Shu-Osher representation (2.8)

y(i) = viy(n) +
s∑
j=1

+
(
αijy(j) + ∆tβijF (y(j))

)
+

s∑
j=1

(
α̃ijy(j) + ∆tβ̃ijG(y(j))

)
We know αij , α̃ij ≥ 0 and from the consistency condition (2.9), 1−∑s

j=1 αij−
∑s
j=1 α̃ij =

vi

‖y(i)‖ ≤ (vi) ‖y(n)‖+
s∑
j=1

αij‖
(

y(j) + ∆t
βij
αij

F (y(j))
)
‖+

s∑
j=1

α̃ij‖
(

y(j) + ∆t
β̃ij
α̃ij

G(y(j))

)
‖

‖y(i)‖ ≤
1−

s∑
j=1

αij −
s∑
j=1

α̃ij

 ‖y(n)‖+
s∑
j=1

αij‖y(j)‖+
s∑
j=1

α̃ij‖y(j)‖

1 ≤ i ≤ s+ 1

(2.12)

‖
(
y(j) + ∆t βijαij F (y(j))

)
‖ ≤ ‖y(j)‖, ‖

(
y(j) + ∆t β̃ijα̃ijG(y(j))

)
‖ ≤ ‖y(j)‖

Just as in the SSP Book [7], let q be the index of the ARK stage with the largest norm,
i.e q ∈ {1, 2, · · · s+ 1} such that ‖y(i)‖ ≤ ‖y(q)‖ for all 1 ≤ i ≤ s+ 1. Taking i = q:

S. Conde and J.N. Shadid 33

‖y(q)‖ ≤
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 ‖y(n)‖+
s∑
j=1

αqj‖y(j)‖+
s∑
j=1

α̃qj‖y(j)‖

‖y(j)‖ ≤ ‖y(q)‖ ∀1 ≤ j ≤ s+ 1

‖y(q)‖ ≤
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 ‖y(n)‖+
s∑
j=1

αqj‖y(q)‖+
s∑
j=1

α̃qj‖y(q)‖
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 ‖y(q)‖ ≤
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 ‖y(n)‖
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 6= 0→ ‖y(q)‖ ≤ ‖y(n)‖

suppose instead
(

1−∑s
j=1 αqj −

∑s
j=1 α̃qj

)
= 0, then

‖y(q)‖ ≤
1−

s∑
j=1

αqj −
s∑
j=1

α̃qj

 ‖y(n)‖+
s∑
j=1

αij‖y(j)‖+
∑
ij

α̃ij‖y(j)‖

‖y(i)‖ ≤ ‖y(q)‖, ∀1 ≤ i ≤ s+ 1

‖y(q)‖ ≤
s∑
j=1

αij‖y(j)‖+
s∑
j=1

α̃ij‖y(j)‖ → ‖y(q)‖ ≤
 s∑
j=1

αij +
s∑
j=1

α̃ij

 ‖y(j)‖

recall that q is chosen so that ‖y(i)‖ ≤ ‖y(q)‖, this implied that ‖y(j)‖ = ‖y(q)‖ for every j
such that

(∑s
j=1 αij +

∑s
j=1 α̃ij

)
6= 0. Let J = {j :

(∑s
j=1 αij +

∑s
j=1 α̃ij

)
6= 0}. If there

exist j∗ ∈ J such that 1−
(∑s

j=1 αij +
∑s
j=1 α̃ij

)
6= 0, it is easy to verify that the method is

zero-well-defined by q = j∗. If there is no j∗ ∈ J such that 1−
(∑s

j=1 αij +
∑s
j=1 α̃ij

)
6= 0,

then it follows that the stages with the indices in J depends only on each other and not on
y(n). Thus the method is not zero-well-defined [7], completing the proof.

2.4. Numerical Optimization. Large classes of RK methods found in literature were
obtained by numerical optimization [7, Sec. 3.4]. The construction of new IMEX RK
methods is posed as a numerical optimization problem:

maximize
C,C̃

subject to A(C, C̃) ≥ 0, Ã(C, C̃) ≥ 0, e(C, C̃) ≥ 0, τp(A, b, Ã, b̃) = 0
(2.13)

where A(C, C̃), Ã(C, C̃), e(C, C̃) are defined in (2.4), (2.5), (2.6) respectively; and τp represents
the set of necessary order conditions for order p, see Table 2.2.

Moreover, the following restrictions on the stability functions are required:

r(z) = 1 + zbT (I − zA)−1e r̃(z) = 1 + zb̃T (I − zÃ)−1e (2.14)

• |r(iw)| ≤ 1, w > 0 : intersection with the imaginary axis
• |r(−w)| ≤ 1, w > 0 : intersection of the stability region with the real axis

34 High Order IMEX

• r(−w) ≥ 0, w > 0 : non-negativity of the stability region
• limz→∞ r̃(z) = 0 : enforcing L-Stability for an A-Stable scheme

The above optimization problem was implemented in MATLAB using the sequential quadratic
programming (SQP) algorithm (fmincon in the optimization toolbox) to numerically search
for higher order methods with nontrivial SSP coefficient.

3. New Schemes. This Section presents some of the new constructed methods ; each
properly marked with the stability and properties it inherits. Recall that L-Stable im-
plicit schemes (Ã, b̃) are required. Although Type-BC have reduced set of necessary order-
conditions, the numerical optimization did not converge to an IMEX method of this type
with an implicit part satisfying the L-Stability requirement. We believe this is due to singu-
larity of the coefficient matrix Ã when the condition c = c̃ is enforced, further consideration
of this result is ongoing.

The new methods were obtained from the numerical optimization formulated in Sec-
tion 2.4. As evident from the stability plots, the optimized explicit method K contains
nontrivial subinterval of the imaginary axis, large subinterval of the negative real axis.
Other classes of methods, such as Type-BC were found but are not represented here; in
general these methods have less desirable stability regions.

S. Conde and J.N. Shadid 35

−4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

(c) Explicit SSP2(3,3,2)-BLSM

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(d) Implicit SSP2(3,3,2)-BLSM

−4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

(e) Explicit SSP2(4,4,2)-BLSM

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

.
(f) Implicit SSP2(4,4,2)-BLSM

Fig. 3.1: Stability region (shaded areas) of explicit method (Figure 3.1(c)) and implicit
method (Figure 3.1(d)) of SSP2(3,3,2)-BLSM: C = 1.3, C̃ = 2.6; explicit method (Fig-
ure 3.1(e)) and implicit method (Figure 3.1(f)) of SSP2(4,4,2)-BLSM: C = 1.3, C̃ = 2.4.
Note that the explicit method contains nontrivial subinterval of the imaginary and the
negative real axis

36 High Order IMEX

−4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

(a) Explicit SSP3(6,6,3)-BLSM

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

(b) Implicit SSP3(6,6,3)-BLSM

−4 −3 −2 −1 0 1
−3

−2

−1

0

1

2

3

(c) Explicit SSP3(4,4,3)-BLSM

−50 0 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

.
(d) Implicit SSP3(4,4,3)-BLSM

Fig. 3.2: Stability region of explicit method (Figure 3.2(a)) and implicit method (Fig-
ure 3.2(b)) of SSP3(6,6,3)-BLSM: C = 1.0, C̃ = 1.1; explicit method (Figure 3.2(c)) and
implicit method (Figure 3.2(d)) of SSP3(4,4,3)-BLSM: C = 1.0, C̃ = 2.0. Note that the
explicit method contains nontrivial subinterval of the imaginary and the negative real axis.

S. Conde and J.N. Shadid 37

4. Numerical Results.

4.1. Order Verification. In this test, the aim is to verify the convergence (order-
of-accuracy) of the SSP IMEX RK method on an advection-diffusion PDE ∂u

∂t + a∂u∂x =
ν ∂

2u
∂x2 with the initial condition u(x, t = 0) = A sin(2πkx) and known exact exact solution

u(x, t) = A exp(−νk2t) sin (2πk(x− at)).

∆ t
10

-3
10

-2
10

-1

E
rr

o
r

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

L-2 Error

SSP2(3,3,2)-BLSM:(1.3, 2.6)
SSP2(4,4,2)-BLSM:(1.3, 2.4)
P=2

(a) Second Order

∆ t
10

-3
10

-2
10

-1

E
rr

o
r

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

L-2 Error

SSP3(4,4,3)-BLSM:(1.0, 2.0)
SSP3(6,6,3)-BLSM:(1.0, 1.1)
P=3

(b) Third Order

Fig. 4.1: Convergence result of the methods, using spectral method with 64 spatial points
and k = 1, a = 1, ν = 0.5

Figure 4.1 shows that the methods obtained the expected formal order-of-accuracy.

4.2. SSP Study. In Section 4.1, it was shown that the methods attained the correct
order of accuracy. In this section, the aim is to show the SSP property of the methods.

As a model problem a coupled-first order hyperbolic problem is solved for both the
explicit (K) and the implicit (K̃) Runge–Kutta to show that both methods do maintain
the desired Total Variation (TV) Diminishing stability. For this simple test, a = b = 1
from (4.1), which results in the CFL simply being the observed SSP coefficient.

ut + avx = 0 vt + bux = 0 (4.1)

To do this, the first order upwind discretization in space is employed, which is known
to be TVD [8]. The initial condition is a square wave for both v(x, t) and u(x, t) .

Figures 4.2 show the observed total variation of Equation (4.1) for p = 2 and p = 3.
Figure 4.2(a) shows that the explicit solution is TVD for CFL < 1.20; an overshoot occurs
in the very first step in the solution for CFL = 1.20. In Figure 4.2(c), SSP3(4,4,3)-BLSM
violates TVD for the explicit method at CFL = 1.60 > C in the very first time step
TV D ≈ 2.072491 > 2.0. There are no TVD violation in the implicit solution since CFL < C̃.

38 High Order IMEX

0 0.1 0.2 0.3 0.4 0.5 0.6
2

2

2

2

2

2

2

2

SSP2(3,3,2)-BLSM : cfl = 0.90
SSP2(3,3,2)-BLSM : cfl = 1.00
SSP2(3,3,2)-BLSM : cfl = 1.10
SSP2(3,3,2)-BLSM : cfl = 1.20
SSP2(4,4,2)-BLSM : cfl = 0.60

(a) TV(u(x, t))

0 0.1 0.2 0.3 0.4 0.5 0.6
2

2

2

2

2

2

2

2

SSP2(3,3,2)-BLSM : cfl = 0.90
SSP2(3,3,2)-BLSM : cfl = 1.00
SSP2(3,3,2)-BLSM : cfl = 1.10
SSP2(3,3,2)-BLSM : cfl = 1.20
SSP2(4,4,2)-BLSM : cfl = 0.60

(b) TV(v(x, t))

0 0.1 0.2 0.3 0.4 0.5
2

2

2

2

2

2

2

2

SSP3(6,6,3)-BLSM : cfl = 0.90
SSP3(6,6,3)-BLSM : cfl = 0.99
SSP3(6,6,3)-BLSM : cfl = 1.00
SSP3(6,6,3)-BLSM : cfl = 1.10
SSP3(4,4,3)-BLSM : cfl = 1.30
SSP3(4,4,3)-BLSM : cfl = 1.40
SSP3(4,4,3)-BLSM : cfl = 1.50
SSP3(4,4,3)-BLSM : cfl = 1.60

(c) TV(u(x, t))

0 0.1 0.2 0.3 0.4 0.5
2

2

2

2

2

2

2

2

SSP3(6,6,3)-BLSM : cfl = 0.90
SSP3(6,6,3)-BLSM : cfl = 0.99
SSP3(6,6,3)-BLSM : cfl = 1.00
SSP3(6,6,3)-BLSM : cfl = 1.10
SSP3(4,4,3)-BLSM : cfl = 1.30
SSP3(4,4,3)-BLSM : cfl = 1.40
SSP3(4,4,3)-BLSM : cfl = 1.50
SSP3(4,4,3)-BLSM : cfl = 1.60

(d) TV(v(x, t))

Fig. 4.2: Figure 4.2(a) (explicit) and Figure 4.2(b) (implicit) shows the total variation of
the square waves for SSP2(3,3,2)-BLSM.and SSP2(4,4,2)-BLSM Figure 4.2(c) (explicit) and
Figure 4.2(d) (implicit) shows the total variation of the square waves for SSP3(4,4,3)-BLSM
and SSP3(6,6,3)-BLSM .

5. Conclusion. Through the paper, the construction of the new IMEX RK was demon-
strated through the identification of the properties necessary to achieve an accurate and
stable numerical simulation. The demonstrated methods are overall SSP IMEX RK of or-
der p ≤ 3, with nontrivial region AM (C, C̃ > 0); the explicit method containing imaginary
axis [−iw, iw], w > 0; the implicit method maintaining the L-Stability; and both methods
both containing a large subinterval of the negative real axis [−z, 0], z > 0.

In order to achieve a 4th order scheme for the Runge–Kutta method, a Type-BC as-
sumption was made, however, such methods were unable to maintain L-Stability, which is

S. Conde and J.N. Shadid 39

crucial to the stiffness of the implicit part. Although accurate, due to the lack of L-Stability,
these methods are not recommended for practical use. The Type-BC assumption enforces
structure on previously stated methods; the conjecture follows that structure makes it im-
possible for a fourth order Type-BC method to maintain L-stability. A formal proof of the
conjecture and more numerical examples will be pursued in the future work.

REFERENCES

[1] Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. Implicit–Explicit Runge–Kutta Methods
for Time-dependent Partial Differential Equations. Appl. Numer. Math, 25:151–167, 1997.

[2] S. Boscarino, L. Pareschi, and G. Russo. Implicit–Explicit Runge–Kutta Schemes for Hyperbolic
Systems and Kinetic Equations in the Diffusion Limit. SIAM Journal on Scientific Computing,
35(1):A22–A51, 2013.

[3] Sebastiano Boscarino. Error Analysis of Imex Runge-Kutta Methods Derived from Differential-
Algebraic Systems. SIAM Journal on Numerical Analysis, 45(4):1600–1621, 2007.

[4] Kevin Burrage and R.P.K. Chan. On Smoothing and Order Reduction Effects for Implicit Runge–
Kutta Formulae, 1993.

[5] John C Butcher. On Runge–Kutta processes of high order. Journal of the Australian Mathematical
Society, 4(02):179–194, 1964.

[6] L. Ferracina and M. N. Spijker. Strong Stability of Singly–Diagonally–Implicit Runge–Kutta Methods.
Appl. Numer. Math., 58(11):1675–1686, November 2008.

[7] S. Gottlieb, D.I. Ketcheson, and C.W. Shu. Strong Stability Preserving Runge–Kutta and Multistep
Time Discretizations. World Scientific, 2011.

[8] Sigal Gottlieb and Chi-Wang Shu. Total Variation Diminishing Runge–Kutta Schemes. Mathematics
of Computation, 67(221):73–86, January 1998.

[9] Inmaculada Higueras. Strong Stability for Additive Runge-Kutta Methods. SIAM Journal on Numer-
ical Analysis, 44(4):1735–1758, 2006.

[10] Inmaculada Higueras, Natalie Happenhofer, Othmar Koch, and Friedrich Kupka. Optimized Strong
Stability Preserving IMEX Runge–Kutta Methods. J. Computational Applied Mathematics,
272:116–140, 2014.

[11] W. Hundsdorfer and J.G. Verwer. Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations. Springer Series in Computational Mathematics. Springer, 2003.

[12] Willem Hundsdorfer and Steven J. Ruuth. On Monotonicity and boundedness properties of linear
multistep methods. J. MATH. COMPUT., 75(254):655–672, April 2006.

[13] Willem Hundsdorfer and M. N. Spijker. Boundedness and Strong Stability of Runge–Kutta Methods.
Math. Comput., 80(274):863–886, 2011.

[14] Christopher A. Kennedy and Mark H. Carpenter. Additive Runge–Kutta Schemes for Convection–
Diffusion–Reaction Equations. Appl. Numer. Math., 44(1-2):139–181, January 2003.

[15] David I. Ketcheson. Computation of Optimal Monotonicity Preserving General Linear Methods. Math-
ematics of Computation, July 2009.

[16] David I. Ketcheson, Colin B. Macdonald, and Sigal Gottlieb. Optimal Implicit Strong Stability Pre-
serving Runge–Kutta Methods. Appl. Numer. Math., 59(2):373–392, February 2009.

[17] J.F.B.M. Kraaijevanger. Contractivity of Runge–Kutta Methods. BIT Numerical Mathematics,
31(3):482–528, 1991.

[18] J.F.B.M. Kraaijevanger. Contractivity of Runge–Kutta Methods. BIT Numerical Mathematics,
31(3):482–528, 1991.

[19] Lorenzo Pareschi and Giovanni Russo. Implicit-Explicit Runge-Kutta Schemes and Applications to
Hyperbolic Systems with Relaxation. Journal of Scientific Computing, 25(1):129–155, 2005.

[20] Joachim Rang. An Analysis of the Prothero-Robinson Example for Constructing New Adaptive ES-
DIRK Methods of Order 3 and 4. Appl. Numer. Math., 94(C):75–87, August 2015.

[21] Russell Williams, Kevin Burrage, Ian Cameron, and Minnie Kerr. A Four-stage Index 2 Diagonally
Implicit Runge-Kutta Method. Applied Numerical Mathematics, 40(3):415 – 432, 2002.

CCR Summer Proceedings 2015 40

PERIDYNAMIC MULTISCALE FINITE ELEMENT METHOD

TIMOTHY B. COSTA∗, STEPHEN D. BOND† , DAVID LITTLEWOOD‡ , AND STAN MOORE§

Abstract. In this work we present a Nonlocal Multiscale Finite Element Method which solves the
peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider
a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse-
scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method.

1. Introduction. The problem of computing quantum-accurate design-scale solutions
to mechanics problems is rich with applications and serves as the background to modern
multiscale science research. The problem can be broken into component problems comprised
of communicating across adjacent scales, which when strung together create a pipeline for
information to travel between quantum scales and design-scales. Traditionally, this involves
connections between a) quantum electronic structure calculations and molecular dynamics
and between b) molecular dynamics and local partial differential equation models at the
design-scale. The second step, b), is particularly challenging since the appropriate scales
of molecular dynamic and local partial differential equation models do not overlap. The
peridynamic model for continuum mechanics provides a solution to this problem, as the
basic equations of peridynamics are mathematically valid at a wide range of scales limiting
from the classical partial differential equation models valid at the design-scale to the scale of
molecular dynamics. In this work we focus on the development of multiscale finite element
methods for the peridynamic model, in an effort to create a mathematically consistent chan-
nel for microscale information to travel from the upper limits of the molecular dynamics
scale to the design-scale. In particular, we first develop a Nonlocal Multiscale Finite Element
Method which solves the peridynamic model at multiple scales to include microscale infor-
mation at the coarse-scale. We then consider a method that solves a fine-scale peridynamic
model to build element-support basis functions for a coarse-scale local partial differential
equation model, calld the Mixed Locality Multiscale Finite Element Method. Additionally,
we present a novel Galerkin framework, the ‘Ambulant Galerkin Method’, which represents
a first step towards a unified mathematical analysis of local and nonlocal multiscale finite
element methods, and whose future extension will allow the analysis of multiscale finite el-
ement methods that mix models across scales under certain assumptions of the consistency
of those models.

This results in this report, and additional results, are given in detail in [4]. This report
is organized as follows. In Section 2 we present a Galerkin framework, called the Ambulant
Galerkin Method, which will serve as the background to the mathematical analysis of the
Nl-MSFEM and future extensions. In Section 3 we present the peridynamic model of solid
mechanics. In Section 4 we present the nonlocal multiscale finite element method, as well
as a variant that connects nonlocal and local models across scales. In Section 6 we present
numerical results. Finally in Section 7 we give concluding remarks.

2. Ambulant Galerkin Method. In this section we present a Galerkin framework
called the ‘Ambulant Galerkin Method.’ This method is motivated by a desire for an abstract
framework for the analysis of multiscale finite element methods designed for local, nonlocal,
or mixed-locality problems. The principal idea behind the method is the construction of a

∗Department of Mathematics, Oregon State University, costat@math.oregonstate.edu
†Center for Computing Research, Sandia National Laboratories, sdbond@sandia.gov
‡Center for Computing Research, Sandia National Laboratories, djlittl@sandia.gov
§Center for Computing Research, Sandia National Laboratories, stamoor@sandia.gov

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 41

correction operator which translates an approximating subspace toward the true solution in
order to reduce error without increasing the dimension of the approximating subspace.

Let V be a Hilbert space, V ′ = L(V,R) be the space of continuous linear functionals on
V . Let B ∈ L(V, V ′) be V -coercive and let f ∈ V ′. We consider the abstract problem

find u ∈ V s.t. Bu− f ∈ V o. (2.1)

Here the superscript o denotes the annhililator of the space V ,

V o := {f ∈ V ′ : f(v) = 0, ∀v ∈ V }. (2.2)

Our first step is to define an approximation space. Presumably this space has a low
number of degrees of freedom, and produces an insufficiently accurate solution with standard
methods. Let V H ⊂ V be a finite dimensional subspace with basis {φi}NHi=1, called the
’approximation space’ and let IH : V → V H be an orthogonal projection operator.

In order to decompose the space V into a direct sum decomposition of V H and a
remainder space we take advantage of the properties of an orthogonal projection operator.
Define the ’remainder space’ V r by

V r = {v ∈ V : IH(v) = 0}, (2.3)

so that

V = V H ⊕ V r. (2.4)

Our goal now is to enhance the space V H without increasing the total degrees of freedom
in the approximation problem, i.e. without increasing the dimension of the approximation
space V H . To do this, we will define a correction operator that takes advantage of the direct
sum decomposition V = V H ⊕ V r to translate the space V H within V to a space of the
same dimension, which contains the exact solution. This correction operator Q : V H → V r

is defined as the solution to the following problem:

given φ ∈ V H , find Q(φ) ∈ V r s.t. B(φ+Q(φ))− f ∈ (V r)o. (2.5)

The correction operator acts on a function φ ∈ V and produces a function Q(φ) ∈ V r such
that φ+Q(φ) now contains information about the solution to the problem posed on V (2.1).
To make this precise, define the reconstruction operator R : V H → V as R = Id+Q, then
define the ’ambulant’ space

V A = span{R(φi)|{φi}NHi=1 is a basis for V H}. (2.6)

As we will show shortly, the ambulant space contains the true solution to the model problem
(2.1). To see this, consider the Petrov-Galerkin problem where we use the ambulant space
as the trial space and the original approximation space V H as the test space:

find uA ∈ V A : BuA − f ∈ (V H)o. (2.7)

Lemma 2.1. (Proof in [4]) Problems (2.1) and (2.7) are equivalent.
Additionally, we can state the standard Galerkin problem on V A and obtain a similar

result:

find u ∈ V A s.t. Bu− f ∈ (V A)o. (2.8)

Lemma 2.2. (Proof in [4]) Problems (2.1) and (2.8) are equivalent.

42 Peridynamic Multiscale FEM

2.1. Ambulant Approximations. Lemmas 2.1 and 2.2 point out that while (2.7) and
(2.8) are formally finite dimensional, the dependence of Q on the dimension of V r results in
infinite dimensional problems. In this section we consider finite dimensional approximations
of the operator Q and the convergence of the corresponding methods in the Galerkin and
Petrov-Galerkin settings.

To design finite dimensional approximations, we introduce a family of finite dimensional
spaces {V a | a > 0} such that

V ⊃ V a ⊃ V H , ∀a. (2.9)

To assist with the convergence analysis we make a sensible assumption on the family of
spaces {V a},

TCassumption 1. The family {V a}a is dense in V in the sense that for each v ∈ V
there exists a sequence {vn ∈ V an} with an → 0 as n→∞ such that

‖v − vn‖V → 0 as n→∞. (2.10)

Choosing a particular a, we then we set

V r,a = Ker(IH |V a). (2.11)

Then we define the ambulant approximation space V Aa by the basis functions
{Ra(φi)}NHi=1 where Ra = Id+Qa and Qa(φi) is the solution to the problem,

find Qa(φi) ∈ V r,a s.t. B(φi +Qa(φi))− f ∈ (V r,a)o. (2.12)

2.1.1. Petrov-Galerkin Formulation. With the finite dimensional approximation
operator Qa at hand we can define the Ambulant Petrov-Galerkin problem,

find upg ∈ V Aa s.t. Bupg − f ∈ (V H)o. (2.13)

We would like to know that the Ambulant Petrov-Galerkin method converges to the
true solution as a→ 0.

Theorem 2.3. (Proof in [4]) Under Assumption 1 we have,

lim
a→0
‖u− upg‖V = 0. (2.14)

So, we see that without changing the approximation space V H , we can converge to the true
solution with refinement only in the residual space V r,a.

2.1.2. Galerkin Formulation. Next we consider the finite dimensional Ambulant
Galerkin problem,

find ug ∈ V Aa s.t. Bug − f ∈ (V Aa)o. (2.15)

Theorem 2.4. (Proof in [4]) Under Assumption 1 we have,

lim
a→0
‖u− ug‖V = 0. (2.16)

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 43

2.2. Source Removal. In this section we analyze the error induced by removing the
source term f from the calculation of the ambulant basis functions in the abstract framework.
Thus we replace (2.12) with

find Qa∗(φi) ∈ V r,a s.t. B(φi +Qa∗(φi)) ∈ (V r,a)o. (2.17)

There are several reasons one may be interested in removing the source term. First,
as we will see, in the multiscale finite element context we are interested in obtaining basis
functions that correspond to material heterogeneity, not to larger scale force variations.
Removing the source term encourages the computed basis functions to respond solely to the
material parameters within B. Additionally, we have the following result stating that with
no source the reconstruction operator is an orthogonality preserving map.

Proposition 2.5. Applying the Riesz Representation Theorem, write Bu(v) = (Bu, v)V ,
so that in (2.17) B : V r,a → V r,a. Assume B is a self-adjoint operator. Define Ra∗ = Id+Qa∗
where Qa∗ is given by (2.17). Then Ra∗ preserves orthogonality. In particular, if {φi}NHi=1 is
an orthogonal basis for V H , then {Ra∗(φi)}NHi=1 is an orthogonal basis for V Aa .

Let α be the coercivity constant for the operator B, and consider the difference,

α‖Ra∗(φi)−Ra(φi)‖2V ≤ (B(Ra∗(φi)−Ra(φi)), Ra∗(φi)−Ra(φi))V
= (BRa∗(φi), Ra∗(φi))V − (BRa∗(φi), Ra(φi))V

− (BRa(φi), Ra∗(φi))V + (BRa(φi), Ra(φi))V . (2.18)

After a technical calculation and applying (2.12) and (2.17) we have,

α‖Ra∗(φi)−Ra(φi)‖2V ≤ (f,Qa(φi)−Qa∗(φi))V . (2.19)

This tells us that in the finite element context, the error induced by dropping the source
term will be on the order of the mesh size in V H .

3. Peridynamic Model of Continuum Mechanics. The peridynamic theory of
continuum mechanics is a nonlocal theory that remains valid in the presence of disconti-
nuities. The theory has several advantages over the traditional theory, including natural
modeling of material failure, validity across a wide range of scales, and the ability to model
nonlocal effects.

The original peridynamic theory (bond-based peridynamics) was introduced by S.A.
Silling in 2000 [21]. In 2007 [18] Silling et al. introduced the state-based peridynamic
model, which significantly enhanced the types of materials the theory is able to model.
Significant work has been done on comparing the peridynamic model to discrete models
and classical continuum theory. In 2008 Silling and Lehoucq [25] established, under suitable
assumptions, the convergence of the peridynamic model to classical elasticity theory in the
limit of vanishing nonlocality. Lehcoucq and Silling, and Seleson [11, 16] examined the
relationship between molecular dynamics and the peridynamic theory, and it showed that
molecular dynamics is a special case of the peridynamic model when generalized functions are
used in the constitutive model. In 2015 [13] Rahman and Foster examined the relationship
between statistical mechanics and the peridynamic theory.

Let D ⊂ Rd, d ∈ {1, 2, 3}, denote a material body. The principal assumption in the
peridynamic theory is that any body-point x in the reference configuration is acted upon
by forces due to the deformation of all the body-points q within some neighborhood of
finite radius δ. The radius δ is referred to as the horizon, and the set of points within this
neighborhood is referred to as the family of x, typically denoted Hx = {q ∈ D | |q−x| < δ}.

44 Peridynamic Multiscale FEM

In the peridynamic theory, a concise form of the equation of motion is stated as

ρ(x)utt(x, t) =
∫
Hx

f(q, x, t) dq + b(x, t), x ∈ D, t > 0, (3.1)

where ρ(x) is the density of the body in a reference configuration, u(x, t) is the displacement
field, and b is a prescribed body force density. The first term on the right hand side is
the internal force density, and it is here that we see, mathematically, the expression of
nonlocality. The internal force density at a point x depends on all points in the family of
x. Further, for a given body-point x ∈ D it is assumed that beyond the horizon, q exerts
no force on x. So,

|q − x| > δ ⇒ f(q, x, t) = 0. (3.2)

The function f contains information about the deformation and the material model, both
from the point x and the point q.

In this work we restrict ourselves to a linear peridynamic body, for which (3.1) has the
form,

ρ(x)utt(x, t) =
∫
D

C(x, q)(u(q, t)− u(x, t)) dq + b(x, t), (3.3)

where C(·, ·) : D × D → Rd×d is a tensor-valued micro-modulus function which describes
the material. We note that the linear peridynamic model assumes small displacements, but
does not prohibit fracture. We require that the micromodulus function C(x, q) is symmetric
in its arguments so that the integrand is anti-symmetric in accordance with Newton’s third
law.

Additionally, the peristatic problem has a similar formulation,∫
D

C(x, q)(u(q)− u(x)) dq + b(x, t) = 0. (3.4)

3.1. Weak Formulation of Peridynamics. As has been
well-established at this point, standard boundary conditions are insufficient for the nonlocal
peridynamic model. Instead, we require a volume constraint. To introduce the volume
constraint, we define DI , the interaction domain, as

DI = {x 6∈ D : dist(x, ∂D) ≤ δ}, (3.5)

and

D′ = D ∪DI . (3.6)

Then we define the bilinear forms,

(·, ·)ρ : V × V → R : (u, v)ρ =
∫
D′
ρuv dx, (3.7)

(·, ·) : V × V → R : (u, v) =
∫
D′
uv dx, (3.8)

B : V × V → R : B(u, v) =
1
2

∫
D′

∫
D′
C(x, q)(u(q)− u(x))(v(q)− v(x)) dq dx. (3.9)

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 45

The energy space associated with the linear peridynamic problem is given by

E = {w : D′ → Rd : B(w,w) <∞}. (3.10)

with the semi-norm,

|w|E = (B(w,w))
1
2 (3.11)

Then choosing the homogeneous Dirichlet problem, we define

V = {w ∈ E : w|DI = 0}, (3.12)

with the inner product and norm,

(u, v)V = B(u, v), (3.13)

‖u‖2V = B(u, u). (3.14)

Finally, we define,

W = H2(0, T ;V) :=

v : [0, T]→ V

∣∣∣∣∣∣
(∫ T

0

‖∂itv(t)‖2V dt

) 1
2

<∞, i = 0, 1, 2

 . (3.15)

Then we have the weak form of the homogeneous Dirichlet linear peridynamic problem,

find u ∈W : (utt(t), v)ρ +B(u(t), v) = (b(t), v), ∀v ∈ V and a.e. t ∈ [0, T]. (3.16)

And for the static case,

find u ∈ V : B(u, v) = (b, v), ∀v ∈ V. (3.17)

4. Peridynamic Multiscale Finite Element Method. In this section we describe
how the AFEM framework connects directly to a nonlocal multiscale finite element method
for the peristatic problem (3.17). We then consider a method that solves a fine-scale peri-
dynamic model to build element-support basis functions for a coarse-scale local partial
differential equation model, called the Mixed Locality Multiscale Finite Element Method
(ML-MSFEM).

4.1. Nonlocal Multiscale Finite Element Method. Let T H = {Ti}Ni=1 be a regu-
lar triangulation of the domain D′ into intervals (d = 1), triangles (d = 2), or tetrahedrons
(d = 3). Here H is the mesh size, and we consider a discontinuous piece-wise linear finite
element space. We note that a discontinuous Galerkin approximation to the peridynamic
problem is conforming [3]. Denote by M the number of basis functions on each element.
Let {φi,j}, i ∈ {1, . . . , N} and j ∈ {1, . . . ,M} be the basis for the finite element problem,
so that V H = span{φi,j}ij .

For the space V a we take the simplest case of a regular mesh refinement of the mesh
T H . Denoting this new mesh by T a, we have T a = {Yi,k}ik. Throughout, we will use i to
refer to a coarse element in T H , j to index coarse basis functions φi,j on each coarse element,
and k ∈ {1, . . . , Ni} to index fine elements in the mesh refinement within coarse element i.
In this context, a refers to the mesh size of the refined mesh T a. Finally, on each coarse
element Ti, and each fine element Yi,k within Ti, we again define a discontinuous piecewise
linear approximation through basis functions {ψi,k,l}ikl. Here l ∈ {1, . . . ,M} indexes basis

46 Peridynamic Multiscale FEM

Fig. 4.1: Illustration of element and basis indexing in 1D.

functions in the finite element space V a defined on element Yi,k. Figure 4.1 illustrates this
setup in 1D. In this setup we have NH = M ∗N and Na = M

∑N
i=1Ni.

Then for each pair (i, j) the ambulant basis function Ra∗(φi,j) = φi,j + Qa∗(φi,j) is
computed by,

B(Qa∗(φi,j), ψi,k,l) = −B(φi,j , ψi∗,k,l) i∗ = 1, . . . , N, k = 1, . . . , Ni, l = 1, . . . ,M. (4.1)

Notice that in (4.1) the computations are performed on the entire domain D′, and we
expect that Ra∗(φi,j) will have support outside of Ti.

To obtain a method that computes Ra∗(φi,j) locally, we replace (4.1) with

B(Qa∗(φi,j), ψi,k,l) = −B(φi,j , ψi,k,l) k = 1, . . . , Ni, l = 1, . . . ,M. (4.2)

We note that the domain Ti for each computation is padded and homogeneous Dirichlet
volume constraints are enforced in the padded domain. Then,

Ra∗(φi,j) =
{
φi,j +Qa∗(φi,j) x ∈ Ti

0 x 6∈ Ti . (4.3)

This method now defines a nonlocal multiscale finite element method.

5. Mixed Locality Finite Element Method. Due to the relatively high cost of
solving the weak peridynamic model compared to finite element methods for local models,
as well as the decades of work that has gone into the development of FEM codes for local
mechanics models, a natural question to ask is, can we use the multiscale finite element
method to communicate across scales from nonlocal models (fine-scale) to (coarse-scale)
local models of continuum mechanics? We call this method the Mixed Locality Multiscale
Finite Element Method (ML-MSFEM), and describe it in this section for a linear elastic
material.

The local model corresponding to the linear peristatic problem (3.17) is the linear Pois-
son equation,

find u ∈ H1
0 (D) s.t. Bloc(u, v) = (b, v), ∀v ∈ H1

0 (D). (5.1)

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 47

Here

H1
0 = {v ∈ L2(D) : ∂iu ∈ L2(D), i ∈ {x, y, z}, γu = 0}, (5.2)

where ∂i refers to the distributional derivative in the i direction and γ is the trace operator.
Additionally,

H−1 = (H1
0)′, (5.3)

and

Bloc : H1
0 (D)×H1

0 (D)→ R; Bloc(u, v) =
∫
D

∇u · ∇v dx. (5.4)

The micromodulus function C(x, q) and the coefficient function α(x) are related by

C(x, q) =
α(x) + α(q)

2
. (5.5)

For details regarding the assumptions and scaling necessary to obtain this local model
as the 0 horizon limit of the linear peridynamic model, the reader is referred to [25]. In
fact, we will ultimately be interested in coupling local and nonlocal models for which this
convergence does not hold due to, e.g. fracture.

Then the ML-MSFEM method is composed of two steps. First, for each pair (i, j) the
multiscale basis function Ra∗(φi,j) is computed as in the Nl-MSFEM, by (4.2).

The second step requires a choice. The basis functions {Ra∗(φi,j)} are basis functions
for a discontinuous Galerkin space (DG), which is non-conforming for the local PDE model
(5.1). One could then solve (5.1) with a DG method. Alternatively, we can paste the DG
basis functions together across edges to create a basis for a continuous Galerkin space. In
this paper we do the latter. Analysis of these options and the method in general will be the
subject of later work.

6. Numerical Results. In this section we present numerical results for both the non-
local and mixed-locality multiscale finite element methods.

6.1. Nonlocal Multiscale Finite Elements. In Figure 6.1 we compare results from
the standard multiscale finite element method for the linear Poisson equation in 1D,

−(α(x)ux)x = b, x ∈ (0, 1), (6.1)
u(0) = u(1) = 0, (6.2)

and the nonlocal multiscale finite element method for the corresponding peridynamic prob-
lem with horizon δ = 0.01. We set

α(x) = (4 + 3 sin(100x))−1 (6.3)

in the local problem, and

C(x, q) =
α(x) + α(q)

2
(6.4)

in the nonlocal problem. For both problems the force density is set to

b = 1. (6.5)

48 Peridynamic Multiscale FEM

(a) Local multiscale finite element examples. (b) Nonlocal multiscale finite element examples.

Fig. 6.1: Comparison of local and nonlocal multiscale finite element solutions.

In Figure 6.1 for the local (left) and nonlocal (right) problem we compare the solutions
obtained by: (a) standard FEM with 1000 elements, (b) standard FEM with 6 elements,
and (c) multiscale FEM with 6 coarse elements and 30 fine elements per coarse element.
As expected we see good agreement between the solution on the 6 element multiscale space
and the 1000 element standard FEM space in both cases, while the standard FEM solution
with 6 elements is very poor.

The three solutions displayed in Figure 6.1 also provide a clear basis for reviewing
the advantage of the multiscale finite element method in the context of large-scale next
generation computing platforms. Table 6.1 lists the degrees of freedom in the global solve
for each solution as well as the mesh size H. This shows that the MSFEM framework
provides an accurate solution with an extremely small global system to solve and a very
large mesh size. This is done by shifting the computational burden to the decoupled fine-
scale problems which produce basis functions. These subscale problems can be computed
concurrently, with no communication required between nodes, a clear advantage given the
current trends in large scale computing. For the stationary problem the advantages here are
clear: a smaller global problem to solve reduces solution time and memory requirements. For
dynamic problems there is an additional advantage; for any time stepping scheme that is not
fully implicit stability requirements put limitations on the size of the time step taken that
are a function of the mesh size. For dynamic problems the MSFEM framework allows larger
time steps for explicit and semi-implicit schemes by obtaining accuracy in space through
the fine-scale solutions while the time step is determined by the global mesh size.

Method 1000/1 6/1 6/30
Global Degrees of Freedom 2000 12 12
Mesh size H 0.001 0.166 0.166.

Table 6.1: Degrees of freedom and mesh size for solutions in Figure 6.1.

Next we perform convergence tests for the nonlocal multiscale finite element method.

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 49

In these tests we used the following,

uexact(x) = −2x2 +
x sin(30πx)

50
+

cos(30πx)
1500π

+ 2, (6.6)

α(x) =
2

4− 3
5π cos(30πx)

. (6.7)

In Figure 6.2 we show the convergence as the mesh size H is refined for various fixed number
of fine-scale elements used to produced each multiscale basis function on each coarse ele-
ment. We see that the standard finite element method corresponding to 1 fine-scale element
per coarse element fails to achieve the expected convergence rates due to the microscale
heterogeneity of the true solution. In contrast, in the Nl-MSFEM tests, for each number
of fine-scale elements used to compute multiscale basis functions on the coarse mesh we see
order 2 convergence. Additionally, we see a drop in the error as the number of fine elements
used to compute the multiscale basis functions is increased.

Fig. 6.2: H-convergence for fixed numbers of fine-scale elements used in computing multi-
scale basis functions on each coarse element. NlMSFEM-M refers to M fine-scale elements
for each NlMSFEM basis function.

6.2. Mixed Locality Multiscale Finite Elements. In this section we present pre-
liminary results from the mixed-locality multiscale finite element method. In Figure 6.3
we compare results from simulating a problem of periodic microscale heterogeneity with
a horizon, δ = 0.1, large enough to create meaningful difference between the local and
nonlocal solutions. It appears, qualitatively, that the ML-MSFEM method reproduces the
behavior of the nonlocal solution, despite the coarse global solve being performed with the
local model. This is a promising first look at the ML-MSFEM, but needs significant further
investigation.

50 Peridynamic Multiscale FEM

Fig. 6.3: (Left) Local solution with standard FEM, 600 elements. (Middle) Non-local prob-
lem solution with standard FEM with 600 elements. (Right) ML-MSFEM solution with 20
coarse elements, 30 fine elements per basis function.

7. Conclusions. In this report we summarized results contained in [4]. We presented
preliminary results on a multiscale finite element method for the nonlocal peridynamic
theory of continuum mechanics. We presented a novel Galerkin framework intended for a
unified analysis of multiscale finite element methods, and demonstrated good performance
of the nonlocal and mixed-locality multiscale finite element methods on simple 1D problems
that standard finite element methods struggle to solve due to microscale heterogeneity.

The initial results in this report are promising, but much more remains to be done. The
analysis of the transition from the Ambulant Galerkin framework to the multiscale finite
element framework is encouraging but incomplete. In particular, an error depending on
the coarse mesh size H should be discovered in the truncation of the simulation domain
for the multiscale basis functions. Also, while the numerical simulations showed that the
Nl-MSFEM has H2 convergence for piece-wise linear microscale basis functions, the analysis
in this work demonstrated convergence without an explicit convergence rate. In future work
both of these issues will be addressed.

Additionally, analysis of the mixed-locality multiscale finite element method remains to
be seen. We anticipate that the asympototic compatibility framework of Tian and Du [26],
combined with the horizon limit convergence results for the peridynamic model [25] will
pave the way for extending the AFEM framework to allow analysis of the mixed locality
multiscale finite element method.

The numerical results in this work were promising, but were restricted to linear problems
in 1D. In future work numerical experiments for 2D and 3D problems as well as time
dependent and nonlinear problems will be performed. Furthermore, we will implement this
method in Sandia’s multiphysics finite element code, Albany/LCM [15], in combination with
the peridynamics code Peridigm [12]. We anticipate that the methods described here will
be particular useful for time-dependent nonlinear materials for which fully implicit time
stepping schemes are not an option, as we expect the stability condition to be dependent
on the coarse mesh size H.

Ultimately the goal is to communicate, in a mathematically consistent way, from the
quantum scale to design-scale models. In this work we presented preliminary results on an
important component of that goal: communicating from the lower limits of the scales of the
peridynamic theory of continuum mechanics to nonlocal or local models at the design-scale.

REFERENCES

T. Costa, S.D. Bond, D. Littlewood, and S. Moore 51

[1] B. Alali and R. Lipton, Multiscale dynamics of heterogeneous media in the peridynamic formulation,
Journal of Elasticity, 106 (2012), pp. 71–103.

[2] E. Askari, F. Bobaru, R. Lehoucq, M. Parks, S. Silling, and O. Weckner, Peridynamics for
multiscale materials modeling, in Journal of Physics: Conference Series, vol. 125, IOP Publishing,
2008, p. 012078.

[3] X. Chen and M. Gunzburger, Continuous and discontinuous finite element methods for a peri-
dynamics model of mechanics, Computer Methods in Applied Mechanics and Engineering, 200
(2011), pp. 1237–1250.

[4] T. Costa, S. Bond, D. Littlewood, and S. Moore, Peridynamic multiscale finite element method,
SAND Report, Sandia National Laboratories, Albuquerque, New Mexico, (2015).

[5] Q. Du, M. Gunzburger, R. B. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal
diffusion problems with volume constraints, SIAM review, 54 (2012), pp. 667–696.

[6] Q. Du, L. Ju, L. Tian, and K. Zhou, A posteriori error analysis of finite element method for linear
nonlocal diffusion and peridynamic models, Mathematics of Computation, 82 (2013), pp. 1889–
1922.

[7] Q. Du, L. Tian, and X. Zhao, A convergent adaptive finite element algorithm for nonlocal diffusion
and peridynamic models, SIAM Journal on Numerical Analysis, 51 (2013), pp. 1211–1234.

[8] Y. Efendiev and T. Y. Hou, Multiscale finite element methods: theory and applications, vol. 4,
Springer Science & Business Media, 2009.

[9] U. L. Hetmaniuk and R. B. Lehoucq, A special finite element method based on component mode
synthesis, ESAIM: Mathematical Modelling and Numerical Analysis, 44 (2010), pp. 401–420.

[10] R. B. Lehoucq and M. P. Sears, Statistical mechanical foundation of the peridynamic nonlocal
continuum theory: Energy and momentum conservation laws, Physical Review E, 84 (2011),
p. 031112.

[11] R. B. Lehoucq and S. A. Silling, Statistical coarse-graining of molecular dynamics into peridynam-
ics, Report SAND2007-6410, Sandia National Laboratories, Albuquerque, New Mexico, (2007).

[12] M. L. Parks, D. J. Littlewood, J. A. Mitchell, and S. A. Silling, Peridigm users guide v1. 0.0,
2012.

[13] R. Rahman and J. Foster, Peridynamic theory of solids from the perspective of classical statistical
mechanics, Physica A: Statistical Mechanics and its Applications, (2015).

[14] R. Rahman and A. Haque, A peridynamics formulation based hierarchical multiscale modeling ap-
proach between continuum scale and atomistic scale, International Journal of Computational Ma-
terials Science and Engineering, 1 (2012), p. 1250029.

[15] A. G. Salinger, R. A. Bartett, Q. Chen, X. Gao, G. Hansen, I. Kalashnikova, A. Mota, R. P.
Muller, E. Nielsen, J. Ostien, et al., Albany: A component-based partial differential equation
code built on trilinos., tech. rep., Sandia National Laboratories Livermore, CA; Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2013.

[16] P. Seleson, M. L. Parks, M. Gunzburger, and R. B. Lehoucq, Peridynamics as an upscaling of
molecular dynamics, Multiscale Modeling & Simulation, 8 (2009), pp. 204–227.

[17] P. D. Seleson, Peridynamic multiscale models for the mechanics of materials: constitutive relations,
upscaling from atomistic systems, and interface problems, PhD thesis, Florida State University,
2010.

[18] S. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, Peridynamic states and constitutive
modeling, Journal of Elasticity, 88 (2007), pp. 151–184.

[19] S. Silling and R. Lehoucq, Peridynamic theory of solid mechanics, Advances in Applied Mechanics,
44 (2010), pp. 73–166.

[20] S. Silling, O. Weckner, E. Askari, and F. Bobaru, Crack nucleation in a peridynamic solid,
International Journal of Fracture, 162 (2010), pp. 219–227.

[21] S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of
the Mechanics and Physics of Solids, 48 (2000), pp. 175–209.

[22] , Linearized theory of peridynamic states, Journal of Elasticity, 99 (2010), pp. 85–111.
[23] , A coarsening method for linear peridynamics, International Journal for Multiscale Computa-

tional Engineering, 9 (2011).
[24] S. A. Silling and J. V. Cox, Hierarchical multiscale method development for peridynamics, tech.

rep., Sandia National Laboratories, 2014.
[25] S. A. Silling and R. B. Lehoucq, Convergence of peridynamics to classical elasticity theory, Journal

of Elasticity, 93 (2008), pp. 13–37.
[26] X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of

nonlocal models, SIAM Journal on Numerical Analysis, 52 (2014), pp. 1641–1665.
[27] , Asymptotically compatible schemes and applications to robust discretization of nonlocal models,

SIAM Journal on Numerical Analysis, 52 (2014), pp. 1641–1665.

CCR Summer Proceedings 2015 52

ROBUSTNESS AND SENSITIVITY OF A FUNCTIONAL TO ESTIMATE
THE CONVECTION COEFFICIENT

CARLOS A. GARAVITO-GARZÓN∗ AND RICHARD B. LEHOUCQ†

Abstract. The purpose of this paper is to investigate an aspect of a PDE constrained optimization
approach for estimating the velocity field given image data. Our investigation is accomplished via a set
of numerical experiments that show that the functional is robust, sensitive, and largely independent of
boundary conditions.

1. Introduction. The purpose of this paper is to investigate an aspect of a PDE
constrained optimization approach for estimating the velocity field given image data. In
particular, we are interested in understanding the robustness, sensitivity and dependence
upon boundary conditions of the functional for the optimization problem (1.1). This is
accomplished via a set of numerical experiments. The functional used was analyzed by
Ito and Kunisch in [2]; we also consider a minor variation. The functional is the sum
of a discrepancy and regularization terms; the former term determines the fit of the model
induced by the PDE constraint and the latter term imposes structure upon the velocity field
determined. The results of this paper are in support of a PDE constrained optimization
approach for digital image correlation; see [3]

The functional is sensitive, roughly, if it increases dramatically when evaluated away
from the velocity field of interest, or the target velocity b∗. The functional is robust if we
can determine intervals for the regularization parameter β for which the minimum occurs at
the target velocity. The numerical experiments presented in sections 3 and 4 will illustrate
a robust and sensitive functional.

Let φ be the image intensity and φ̂ the corresponding measurements over some domain
Ω ⊂ R1,2. Given φ̂ we are interested in recovering the velocity field. We investigated the
following two objective functions, or functionals,

(φ∗, b∗) = argmin
(φ,b)∈P×B

(
‖φ− φ̂‖2L2(Ω)×(0,τ) +

β

2

{
σ (τ2/b̂2)‖∇b‖2L2(Ω)

(τ/b̂2)‖b‖2L2(Ω)

)
(1.1a)

where φ is subject to

∂

∂t
φ+ b · ∇φ = σ∆φ , φ(x, 0) = φ0(x) , x ∈ Ω , (1.1b)

along with homogenous Dirichlet or Neumann boundary conditions. The second functional,
containing ‖b‖2L2(Ω), was used by Ito and Kunisch in [2] to estimate the velocity b. The
norms used for the functional are defined as

‖φ− φ̂‖L2(Ω)×(0,τ) :=
∫

Ω

∫ τ

0

(
φ− φ̂)2 dx dt ,

‖∇b‖2L2(Ω) :=
∫

Ω

∇b : ∇b dx , and

‖b‖2L2(Ω) :=
∫

Ω

b · b dx .

∗School of Mathematics, University of Minnesota, garav007@umn.edu
†Sandia National Laboratories, rblehou@sandia.gov

C.A. Garavito-Garzón and R.B. Lehoucq 53

We assume without loss of generality that φ is a dimensionless quantity, P and B are suit-
able functional spaces, τ and b̂ are the time interval and a characteristic velocity associated
with the geometry of the problem, respectively. The parameter σ represents the diffusion
coefficient and b∗ and φ∗ are the solutions to our inverse problem. From an experimental
perspective, b and σ represent the mean and variance of the measurements. The purpose
of the scaling parameters σ (τ2/b̂2) and τ/b̂2 are to ensure that both terms in the func-
tional have the same units. This enables the effect of the regularization parameter β to be
ascertained in the numerical experiments.

The velocity solution to the optimization problem (1.1) is not unique; any vector field
b̄ orthogonal to ∇φ̂ grants that b∗ + b̄ is also a minimizer. Hence without loss of generality,
we suppose that ∇ · b∗ = 0. This constraint renders a well-posed optimization problem; see
Ito and Kunisch in [2] for further details.

We determine the robustness and sensitivity through a set of numerical experiments.
The numerical experiments are driven by exploiting the relationship between the PDE con-
straint (1.1b) and the diffusion process given by the Itô stochastic differential equation
(SDE). This relationship is the subject of Section 2. Our numerical experiments are sum-
marized in sections 3 and 4 for one and two-dimensions, respectively. Concluding remarks
are provided in section 5. Our findings suggest that the use of mathematically sophisticated
techniques for the recovery of b from experimental data, e.g., PDE constrained optimization
is a viable approach.

2. Stochastic Model. The first term in the objective function (1.1) needs to discern
the difference between measured intensity values and fit with the diffusion equation. Suppose
that Ω = R1 so that PDE constraint (1.1b) simplifies to

∂φ

∂t
+ b

∂φ

∂x
= σ

∂2φ

∂x2
0 < t ≤ τ , over R ,

φ(x, 0) = φ0(x) ,

where φ0 is nonnegative and
∫

R φ0(x) dx = 1, i.e., φ0 is a probability density on the real
line. The solution φ is then given by

φ(x, t) =
1√

4πσ t

∫
R
e−(x−y−bt)2/(4σ t)φ0(y) dy .

This expression is understood as follows: φ0(y) dy is the probability over a region dy about
y. The product e−(x−y−bt)2/(4σ t)φ0(y) dy scales this probability by its distance from x at
time t. Normalizing the scaling and summing over all y results in an average, or expectation
φ(x, t).

Let E
[
Xt |X0 = x

]
denote the expectation of the random variable Xt conditioned

upon X0 = x. The solution of the diffusion equation also has the well-known probabilistic
identification

φ(x, t) = Ex
[
φ0(Xt)

]
= E

[
φ0(Xt) |X0 = x

]
,

where Xt is a random variable satisfying the stochastic differential equation (SDE)

dXt = b dt+
√

2σ dWt , X0 = x , (2.1)

where Wt is a Wiener process. This interpretation has the benefit of providing a mechanism
to simulate the process associated with the diffusion equation. The solution φ(x, t) is the
expectation of the random variable Xt conditioned on X0 = x; this expectation can be
computed either

54 Robustness and Sensitivity of a Functional to Estimate the Convection Coefficient

• by evaluating the integral (via quadrature) or
• estimating via a Monte Carlo simulation using the SDE; a collection of realizations

is averaged to provide an approximation. This means

Ex
[
φ0(Xt)

] ≈ 1
N

N∑
i=1

φ0(Xi
t), (2.2)

where N denotes the number of realizations or microstates.
We make the modeling assumption that the measured image intensity is exact but that the
underlying trajectory evolves according to the SDE. The difference,

φ(x, t)− φ̂(x, t) = Ex
[
φ0(Xt)

]− φ0(Xt) ,

then represents the fluctuation about the mean of the intensity of a trajectory. The quantity
φ0(Xt) is determined via an application of the stochastic chain rule, i.e., Itô’s Lemma to
obtain

dφ0(Xt) =
(
b
dφ0(Xt)
dXt

+ σ
d2φ0(Xt)
dX2

t

)
dt+

√
2σ

dφ0(Xt)
dXt

dWt . (2.3)

We use the Euler-Maruyama method to integrate the SDE (2.1); see, e.g., [1]. We
estimate the value of φ(x, t) = Ex

[
φ0(Xt)

]
using the Monte Carlo method presented in

(2.2).
We estimate the values of b and σ by Monte Carlo approximations for the mean Ex[Xt]

and variance

Vx[Xt] := Ex[X2
t −

(
Ex[Xt]

)2] .

The estimates can be compared with the closed-form expressions

Ex[Xt] = x+ b t , Vx[Xt] = 2σ t , (2.4)

for the mean and variance of (2.1). The expressions explain that the centered mean is
proportional to time, i.e.,

Ex[Xt]− x ∝ t ,
with constant b—the velocity. The standard deviation

√
Vx[Xt] provides the standard error

for the centered mean. Comparing the estimates of the mean and variance serve as a check
on both our understanding and implementation of the SDE. However, the main interest is in
determining the effect of boundary conditions, i.e., consideration of a finite domain Ω and the
role of either homogenous Dirichlet or Neumann boundary conditions, upon the robustness
and sensitivity of the functional. The generalization of these results to two dimensions is
straightforward and will not be presented.

3. One-Dimensional Experiments.

3.1. Robustness and Sensitivity. The numerical experiments presented in this sec-
tion will show that the functional (1.1a) is both and robust and sensitive for several types
of boundary conditions.

We consider the initial condition φ0(x) = (sin (2x) + sin (3x))2 sin2 (10x)/γ where γ is
a normalization constant. We set Ω = (−3, 3) and b∗ = 1.2. For the computation of the
integrals we use a trapezoidal rule in both space and time. The value of φ̂ is computed using
Itô’s Lemma (2.3). The initial condition and its time evolution are displayed in Figure 3.1.

C.A. Garavito-Garzón and R.B. Lehoucq 55

(a) Initial Condition. (b) Time evolution of φ̂ for periodic boundary condi-
tion.

Fig. 3.1: Initial condition (left) and time evolution of φ̂ (right) using periodic boundary
condition.

(a) 10−3‖∇b‖2
L2(Ω)

regularization and Neumann

boundary condition.

(b) ‖b‖2
L2(Ω)

regularization and Neumann boundary

condition.

(c) 10−3‖∇b‖2
L2(Ω)

regularization and no boundary

condition.

(d) ‖b‖2
L2(Ω)

regularization and no boundary condi-

tion.

Fig. 3.2: Functional with gradient(lefmost) and 10−3‖b‖2L2(Ω)(rightmost) regularizations
with Neumann(top) and no (bottom) boundary conditions for b∗ = 1.2, σ = 0.1 .

Figure 3.2 plots the evolution of the functional over Ω = (−3, 3) for both functionals
(1.1a) where β = 10−3. Figure 3.3 displays the corresponding sensitivity plots. The sen-
sitivity is approximated numerically using central finite differences with respect to b. For
both figures, the time slices increase in variation away from the target velocity with increas-

56 Robustness and Sensitivity of a Functional to Estimate the Convection Coefficient

(a) 10−3‖∇b‖2
L2(Ω)

Regularization and Neumann

boundary condition.

(b) ‖b‖2
L2(Ω)

Regularization and Neumann boundary

condition.

(c) 10−3‖∇b‖2
L2(Ω)

Regularization and no boundary

condition.

(d) ‖b‖2
L2(Ω)

Regularization and no boundary condi-

tion.

Fig. 3.3: Sensitivity of the functional with gradient(leftmost) and 10−3‖b‖2L2(Ω)(rightmost)
regularizations with Neumann(top) and no(bottom) boundary conditions for b∗ = 1.2, σ =
0.1.

ing time. This indicates that we can recover the value of b∗ when the measurements φ̂ are
performed for a sufficient amount of time. Due to space constraints we only report the data
corresponding to Neumann and the no boundary conditions.

The robustness of the functional is displayed in Figure 3.4. The plots demonstrate the
effect of the regularization parameter β for several types of boundary conditions. As β is
decreased, the minimum value of the functional is reached at b∗ = 1.2. This behavior is
compatible with the definition of robustness given at the start of Section 1 and explains
that if β is too large, then the functional renders an inaccurate minimum. The experiments
suggest that both the sensitivity and robustness of the functionals (1.1a) are independent
of the boundary conditions.

3.2. Effect of Boundary Conditions. In order to characterize the effect of boundary
conditions upon the estimate of the velocity the stochastic process, we consider the domain
Ω = (−30.0, 30.0). We condition on a uniform partition of the ball B10−2(0) consisting of
900 points, the time-step for the temporal integration is ∆t = 10−4, σ = 10−1 and we evolve
the system for 20 seconds. We use the random number generator provided by Matlab randn
for the simulation of the Wiener process Wt. We approximate simulating over the real line
by imposing periodic boundary conditions on the system.

Figure 3.5 compares estimates of the mean and variance with their closed form expres-
sions for the velocity fields b∗ = −2,∼ N (−2.0, .1) where N (µ, σ) is the normal distribution

C.A. Garavito-Garzón and R.B. Lehoucq 57

(a) Periodic boundary condition. (b) Neumann boundary condition.

(c) No boundary condition. (d) Dirichlet boundary condition.

Fig. 3.4: Robustness of the functional for several values of the regularization parameter
β using periodic (top-left), Neumann (top-right), no (bottom-left), and Dirichlet(bottom-
right) boundary conditions at time t = 3.0.

with mean µ and variance σ. The plots demonstrate that the estimates derived from the
data are accurate until approximately t = 13 and t = 5 for b∗ = −2.0 and N (−2.0, .1),
respectively. The explanation is that because of the periodic boundary condition, when
the diffusion hits one of the boundary points, the diffusion is moved near the other bound-
ary point introducing a jump for the diffusion. The estimates no longer correspond to the
expressions(2.4) derived under the assumption that the SDE is driven by a Wiener process.

We provide a general characterization of the effect of the boundary condition in Figure
3.6 where, we display the log10 error for the mean (leftmost) and variance (rightmost) using
periodic (green), Dirichlet (red), Neumann (black), and no (blue) boundary conditions.
Our results show that in the periodic case, the error is the biggest one for both mean and
variance. In the variance case the error due periodic boundary conditions is several orders
of magnitude bigger than for the Dirichlet and Neumann types.

We conclude from both Figures 3.5–3.6 that the imposition of boundary conditions
has no effect until the diffusion approaches the boundary. Hence if x is near the center of
the finite domain Ω and the time interval is not large, then the boundary conditions are
irrelevant.

58 Robustness and Sensitivity of a Functional to Estimate the Convection Coefficient

(a) b∗ = −2 (b) b∗ ∼ N (−2.0, .1)

(c) b∗ = −2 (d) b∗ ∼ N (−2.0, .1)

(e) b∗ = −2 (f) b∗ ∼ N (−2.0, .1)

Fig. 3.5: Mean and variance for constant velocity (leftmost) and a spatial varying velocity
with mean −2 (rightmost) with σ = 0.1. The estimates deviate from the closed form
expressions due to the imposition of periodic boundary conditions.

C.A. Garavito-Garzón and R.B. Lehoucq 59

(a) Logarithm of the error for the SDE Mean (b) Logarithm of the error for the SDE Variance

Fig. 3.6: Logarithm error for the mean (leftmost) and variance (rightmost) as function of
the initial distribution center for a target velocity b∗ = −1.0 and σ = 0.1 using for types of
boundary conditions periodic (green), Dirichlet (red), Nuemann (black) and the free space
solution (blue).

60 Robustness and Sensitivity of a Functional to Estimate the Convection Coefficient

4. Two-Dimensional Experiments. We consider cases where the velocity has the
following form b∗ = 2 (y,−x) so that b∗ = 2. We compare ‖∇b‖2L2(Ω) and ‖b‖2L2(Ω) reg-
ularizations. The initial condition is a Gaussian pulse φ0(x, y) = 1

π exp (−x2 − y2). The
SDE integration is performed over the time interval (0, 6) with time step is ∆t = 10−4.
We conclude that these two regularizations have an equivalent behavior on the sensitivity
of the functional. This fact is important for optimization techniques such as PDE con-
strained optimization, where the treatment of the ‖b‖2L2(Ω) is less difficult than its gradient
counterpart.

Figure 4.1 displays the functionals for increasing time and the velocity parameter b. The
data indicates that the functional has a global minimum at b = b∗ = 2. In Figure 4.1, we
display only the results corresponding to Neumann (top) and free (boundary) conditions.

The sensitivity of the functional is displayed in Figure 4.2 for Neumann (top) and no
(bottom) boundary conditions. This Figure shows that the functional is indeed sensitive
provided that the time t > 1. Notice that, the time to attain a prescribed level sensitivity
is larger for than for a one-dimensional problem. Figure 4.1 and 4.2 show the existence of
a local minimum at b = 0. Nevertheless, this local minimum is less sensitive than the one
at b = b∗ = 2 (Figure 4.2) since the region where the derivative changes the most is larger
when b = b∗ = 2.

(a) 10−5‖∇b‖2
L2(Ω)

Regularization and Neumann

boundary condition.

(b) ‖b‖2
L2(Ω)

Regularization and Neumann boundary

condition.

(c) 10−5‖∇b‖2
L2(Ω)

Regularization and no boundary

condition.

(d) ‖b‖2
L2(Ω)

Regularization and no boundary condi-

tion.

Fig. 4.1: Functional in 2D with 10−5‖∇b‖2L2(Ω) (leftmost) and 10−5‖b‖2L2(Ω)(rightmost) reg-
ularizations with Neumann(top) and no(bottom) boundary conditions for b∗ = 2.0 (y,−x)
and σ = 0.1 .

The robustness of the functional is displayed in Figure 4.3 for the ‖∇b‖2L2(Ω) (leftmost)

C.A. Garavito-Garzón and R.B. Lehoucq 61

(a) 10−5‖∇b‖2
L2(Ω)

Regularization and Neumann

boundary condition.

(b) ‖b‖2
L2(Ω)

Regularization and Neumann boundary

condition.

(c) 10−5‖∇b‖2
L2(Ω)

Regularization and no boundary

condition.

(d) ‖b2‖2
L2(Ω)

Regularization and no boundary con-

dition.

Fig. 4.2: Sensitivity of the functional in 2D with 10−5‖∇b‖2L2(Ω) (leftmost) and
10−5‖b‖2L2(Ω)(rightmost) regularizations with Neumann (top) and (bottom) no boundary
conditions for b∗ = 2.0 (y,−x) and σ = 0.1.

and ‖b‖2L2(Ω) regularizations, respectively. The behavior of these types of regularizations
are comparable; for β = 10−5 both approaches have a global minimum at b∗ = 2. However,
the ‖b‖2L2(Ω) regularization varies away from the minimum.

62 Robustness and Sensitivity of a Functional to Estimate the Convection Coefficient

(a) Periodic boundary condition and ‖∇b‖2L2(Ω) reg-

ularization.

(b) Periodic boundary condition and ‖b‖2
L2(Ω)

regu-

larization.

(c) Neumann boundary condition and ‖∇b‖2
L2(Ω)

reg-

ularization.

(d) Neumann boundary condition and ‖b‖2
L2(Ω)

reg-

ularization.

(e) No boundary condition and ‖∇b‖2
L2(Ω)

regular-

ization.

(f) No boundary condition and ‖b‖2
L2(Ω)

regulariza-

tion.

(g) Dirichlet boundary condition and ‖∇b‖2
L2(Ω)

reg-

ularization .

(h) Dirichlet boundary condition and ‖b‖2
L2(Ω)

regu-

larization.

Fig. 4.3: Robustness of the functional in two-dimensions for ‖∇b‖2L2(Ω) (left) and ‖b‖2L2(Ω)

regularizations using a range of values of the parameter β using (from top to bottom)
periodic, Neumann, no, and Dirichlet boundary conditions at time t = 6.0.

C.A. Garavito-Garzón and R.B. Lehoucq 63

5. Conclusions. We presented numerical experiments in one- and two- dimensions
suggesting that both functionals (1.1) are robust and sensitive given a sufficient time τ . A
functional is sensitive, roughly, if it increases dramatically when evaluated away from the ve-
locity field of interest, or the target velocity b∗. The functional is robust if we can determine
intervals for the regularization parameter β for which the minimum of the functional occurs
for the target velocity. Moreover, our conclusion is also independent of the imposition of the
Dirichlet or Neumann boundary conditions. This is in contrast to a statistical estimation
that renders inaccurate estimates unless τ is not large enough so that the diffusion hits the
boundary.

REFERENCES

[1] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations,
SIAM review, 43 (2001), pp. 525–546.

[2] K. Ito and K. Kunisch, Estimation of the convection coefficient in elliptic equations, Inverse problems,
13 (1997), p. 995.

[3] R. B. Lehoucq, D. Z. Turner, and C. A. Garavito-Garzón, PDE constrained optimization for
digital image correlation, Technical Report SAND2015-8515, Sandia National Laboratories, 2015.

CCR Summer Proceedings 2015 64

ACTIVE SUBSPACES FOR CFD/MHD AND ESTIMATING THE EFFECT
OF DIMENSION TRUNCATION ON PROBABILISTIC QUANTITIES OF

INTEREST

ANDREW T. GLAWS∗, TIMOTHY M. WILDEY† , AND JOHN N. SHADID‡

Abstract. In this paper, we give a concise overview of an emerging dimension reduction approach
known as active subspaces. We describe the process of identifying an active subspace as well as an approach
for building response surfaces on the lower-dimensional space and utilizing the response surface to estimate
the probability of events. The methods are applied to standard verification problems in computational fluid
dynamics (CFD) and magnetohydrodynamics (MHD) with known analytic solutions in order to relate the
structure of the active variables to the physics in the problems. We also apply the approach to a more chal-
lenging CFD problem involving coupled heat transfer and fully-developed turbulent flow in a 3-dimensional
pipe using a Spallart-Allmaras Reynolds Averaged Navier Stokes (SARANS) model discretized using sta-
bilized finite elements. In addition, we compare optimization and statistical approaches for estimating the
dimension truncation error and show how these estimates can be used to compute upper and lower bounds
on probabilistic quantities of interest, such as the probability of a quantity of interest exceeding a given
threshold.

1. Introduction. Uncertainty and error are ubiquitous in predictive modeling and
simulation due to unknown model parameters and various sources of deterministic and
stochastic error. Consequently, there is considerable interest in developing efficient and
accurate methods to quantify the uncertainty in the outputs of a computational model. For
many models, a scalar quantity of interest is sufficient to describe the results. This may be an
average value over the domain or the value at some particular point of interest. Monte Carlo
techniques are the standard approach to quantify the uncertainty in a quantity of interest
from a computational model. The general appeal of these methods can be attributed to
their relative ease of implementation and the fact that they effectively circumvent the curse
of dimensionality. Unfortunately, the number of samples required to accurately estimate
certain probabilistic quantities, especially the probability of rare events, may be prohibitively
large for models that require even modest computational costs. Improvements such as
importance sampling can greatly reduce the computational cost, but the number of model
evaluations often remains prohibitively large.

Alternative approaches based on response surface approximations have grown in popu-
larity in recent years as a means to alleviate the computational burden of brute-force Monte
Carlo for computationally intensive models. A wide variety of techniques have been devel-
oped, e.g., piecewise-linear approximations requiring derivative information [21, 20, 12, 2],
global polynomial approximations computed using stochastic spectral methods [15, 26, 25],
and tensor product and sparse grid collocation methods [1, 13, 14, 4, 19]. Unfortunately,
all of these approaches suffer from the curse of dimensionality (some more than others)
and their application becomes intractable beyond a certain number of parameters. Conse-
quently, there is considerable interest in developing mathematical approaches for dimension
reduction.

Common techniques for reducing the dimension involve eliminating parameters which

∗Colorado School of Mines, aglaws@mines.edu,
†Optimization and Uncertainty Quantification Department, Center for Computing Research, Sandia

National Laboratories, Albuquerque, NM 87185, tmwilde@sandia.gov. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lock-
heed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.,
‡Computational Mathematics Department, Center for Computing Research, Sandia National Laborato-

ries, jnshadi@sandia.gov

A.T. Glaws, T.M. Wildey, and J.N. Shadid 65

appear to have little influence on the quantity of interest. The concept of active subspaces
generalizes this approach by searching for directions (subspaces) within the parameter space
which capture the majority of the variation in the response as a function of the “active
parameters” which are linear combinations of the original parameters. This approach has
a solid mathematical foundation [9] and has been very successful in a range of applications
[10, 11, 18].

The goal of this paper is to investigate the application of active subspace techniques on
both simple and challenging problems in CFD and MHD. We are also interested in under-
standing the error in probabilistic quantities of interest, e.g., the probability of a quantity
of interest exceeding a threshold value, due to the dimension truncation error. We explore
both statistical estimates for the dimension truncation error as well as an optimization-based
approach.

The remainder of this paper is organized as follows. In Section 2, we describe the fun-
damental concepts associated with active subspaces and provide algorithms for computing
the active subspace and for building a response surface approximation in the active sub-
space. Section 3 describes how the response surface approximation in the active subspace
can be used to estimate the probability of events and how we can use estimates of the
dimension truncation error to provide upper and lower bounds on the estimate of the prob-
ability. Numerical results are presented in Section 4 and our concluding remarks are given
in Section 5.

2. Active Subspaces. We assume that we are given a computational model and that
a useful scalar quantity of interest can be obtained from this model. The quantity of interest
is written f(x) where the vector x ∈ Ω ⊂ Rm is the collection of model input parameters.
The vector length m is referred to as the dimension of the problem. Furthermore, we assume
we are given a probability density function ρ(x) on the input parameters. Finally, we assume
that the quantity of interest depends sufficiently smoothly on the input parameters so that
we can define and approximate the gradient of the quantity of interest with respect to the
model parameters, ∇xf(x). For the examples in this paper, gradients are approximated
using an adjoint-based approach [21, 17, 8]. There are several techniques that can be used
if the gradients are unavailable, such as approximating the gradients using finite differences
or using surrogate approximations, but this is beyond the scope of this paper.

2.1. Computing the Active Subspace. The computation of the active subspaces
begins with the construction of the symmetric, positive semidefinite, m×m matrix

C =
∫

Ω

(∇xf(x)) (∇xf(x))T ρ(x) dx. (2.1)

Since C is symmetric, it has a real eigenvalue decomposition

C = WΛWT (2.2)

where

Λ =

λ1

. . .
λm

 with λ1 ≥ · · · ≥ λm ≥ 0 (2.3)

and

W =

w1 . . . wm

 with wT
i wj = δij , 1 ≤ i, j ≤ m. (2.4)

66 Active Subspaces for CFD/MHD

The key property of the eigenvalues and eigenvectors of the C matrix is the manner in which
they capture the behavior of f(x),∫

Ω

(
(∇xf(x))Twi

)2
ρ(x) dx = λi, 1 ≤ i ≤ m. (2.5)

The value (∇xf(x))Twi is precisely the directional derivative of f(x) in the direction of wi.
Hence, Equation 2.5 says that the average gradient value of f(x) in the direction wi is λi.
That is, for large values of λi, we can expect that the quantity of interest will vary greatly
along wi, and for small values of λi, the quantity of interest will vary little along wi.

Ideally, the active subspace would be determined by the selection of 1 ≤ n < m such
that the sum of the remaining eigenvalues would be relatively small which would limit
the dimension truncation error. However, it is often more beneficial to select the active
subspace so that there is a large gap between λn and λn+1. It is often easiest in practice
to approximate the integral in Equation (2.1) through Monte Carlo sampling, and selecting
n as described will minimize the error in the approximated active subspace [9]. Once an
appropriate value of n is selected, the eigenvalue and eigenvector matrices are subdivided
into

Λ =
[
Λ1

Λ2

]
and W =

[
W1 W2

]
(2.6)

where Λ1 ∈ Rn×n, Λ2 ∈ R(m−n)×(m−n), W1 ∈ Rm×n, and W2 ∈ Rm×(m−n). That is, Λ1

contains the first n eigenvalues and W1 contains the first n eigenvectors. This subdivision
defines the basis for the active and inactive subspaces. Furthermore, it allows for the
definition of the so called active and inactive variables

y = WT
1 x and z = WT

2 x, (2.7)

respectively. The true (physical) input parameters is then given by

x = W1y +W2z. (2.8)

Equation 2.8 has broken the original m-dimensional input parameter into an n-dimensional
active variable and an (m− n)-dimensional inactive variable. From Equation 2.5, it is clear
that variations in the active variable y will, on average, have significantly greater impacts
on the quantity of interest than variations in the inactive variable z.

For high dimension problems, computation of the C matrix given by Equation 2.1 is dif-
ficult. However, it can be easily approximated using Monte Carlo integration. Furthermore,
the approximation is likely to result in k accurate eigenvalues and eigenvectors if αk log(m)
samples are used. The parameter α is an oversampling factor that is generally chosen to
be between 2 and 10. Thus, a practical algorithm for computation of the active subspace is
given in Algorithm 1.

2.2. Building Response Surface Approximations on the Active Subspace.
Using Equation 2.8, the quantity of interest can be rewritten in terms of the active and
inactive variables

f(x) = f (W1y +W2z) . (2.9)

The goal is to find a function of the active variable which accurately approximates the
full function, g(y) ≈ f

(
WT

1 y +WT
2 z
)
. One natural choice is to average over the inactive

variable for any value of the active variable. That is,

g(y) =
∫
f (W1y +W2z) ρz|y(z) dz (2.10)

A.T. Glaws, T.M. Wildey, and J.N. Shadid 67

Algorithm 1 Computation of the Active Subspace
1: Draw N = αk log(m) random samples of the parameter space according to ρ(x)
2: For each xi, calculate the quantity of interest f(xi) and the gradient ∇xf(xi)
3: Approximate the matrix C by

C ≈ 1
N

N∑
i=1

(∇xf(xi)) (∇xf(xi))
T

4: Take the eigenvalue decomposition C = WΛWT

5: Select 1 ≤ n < m and define

Λ =
[
Λ1

Λ2

]
, W =

[
W1 W2

]
where Λ1 contains the first n eigenvalues and W1 contains the first n eigenvectors

where ρz|y is the conditional probability of z given y. Using this response surface, we get
that ∫ (

f(x)− g(WT
1 x)

)2
ρ(x) dx ≤ C (λn+1 + · · ·+ λm) (2.11)

where C depends on the density function ρ(x). Thus, Equation (2.10) provides a low-
dimensional response surface whose root-mean-squared error is on the order of the sum of
the last m− n eigenvalues. That is, errors in g(y) are contained by the contribution of the
inactive variable to f (W1y +W2z).

Algorithm 2 Building a Response Surface in the Active Subspace
1: Draw N samples from the active subspace according to the marginal density

πy(y) =
∫
ρ (W1y +W2z) dz

2: For each yi, draw M samples from the inactive subspace according to the conditional
density πz|yi(z)

3: For each xij = W1yi +W2zj , calculate the quantity of interest f(xij)
4: Approximate the average value of each point in the active subspace using

g(yi) ≈
1
N

M∑
j=1

f(xij)

5: Construct a response surface g(y) using the N points (yi, g(yi))

Similar to before, this function is difficult to compute for all y. Hence, we choose several
values of the active variable and approximate Equation 2.10 using Monte Carlo integration at
these points. Once this is done a surrogate can be constructed on the low-dimensional space
using any of the well-developed techniques available. A practical process for constructing
g(y) is given in Algorithm 2.

68 Active Subspaces for CFD/MHD

3. Estimating Probabilities using the Response Surface in the Active Sub-
space. In many applications, estimating the probability of a certain event has great prac-
tical importance. Given the quantity of interest from a model and the probability distri-
bution ρ(x) on the inputs, one might ask for the probability that f(x) is greater than a
given threshold. A straightforward approach to answering this question would be to draw
random samples from the input distribution, evaluate the model for each of these samples,
and count how often the quantity of interest exceeds the threshold. This method may not
be practical for several reasons: the model may be computationally expensive to evaluate,
the dimension of the problem may be too large to construct an accurate response surface
approximation, or the true probability may be very small (rare events).

Building a response surface approximation in the active subspace can help resolve these
issues, but will introduce some error into the results. In general, a sample of a response
surface approximation contains error due to interpolation of the response surface as well
as any discretization errors that were present in the computational model. It has been
shown that the adjoint-based approach for a posteriori error estimation can be modified
to estimate these sources of error [6, 7, 5] and to devise adaptive methods to effectively
reduce the dominant components [3, 16]. In this paper, we are primarily concerned with the
additional error in the response surface approximation due to the dimension truncation. A
combined analysis of all sources of error is beyond the scope of this paper and may be the
subject of future work.

Given a response surface approximation in the active subspace and a particular event of
interest, we can provide upper and lower bounds on the probability of this event if we can
bound the dimension truncation error for each sample of the response surface. These bounds
on the probability are produced by considering three cases for each sample of the response
surface approximation. Samples whose value lies outside of the event and whose error
bounds do not cross the threshold value are considered “definitely out”. Similarly, samples
whose value lies inside of the event and whose error bounds do not cross the threshold value
are considered “definitely in”. The remaining samples are classified as “unsure” since the
distance between their value and the threshold is smaller than the error bound. The lower
bound on the probability is computed using only the samples that are “definitely in” the
event. The upper bound is computed using the samples that are “definitely in” and those
that are “unsure”. If the dimension truncation error bounds are robust, then it is easy to
show that these lower and upper bounds on the probability are also robust for the given set
of samples.

3.1. A Statistical Approach. One approach for estimating the dimension truncation
error is to use the variance in the inactive subspace. Chebyshev’s inequality states that for
a random variable X,

P (|X − E(X)| ≥ a) ≤ Var(X)
a2

. (3.1)

Let X = f
(
WT

1 y +WT
2 z
)

where the active variable is fixed. The expectation is then given
by Equation 2.10 and the variance is easily estimated using the same sampling used to build
g(y). Hence, Equation 3.1 can be rewritten as

Pz (|f (W1y +W2z)− g(y)| ≥ a) ≤ σ2
z(y)
a2

(3.2)

where σ2
z(y) is the variance with respect to the inactive variable for a particular value of

the active variable. The range of probabilities is constructed by first choosing a confidence
coefficient 1− α. For each sample, let a be the distance between g(y) and the threshold. If

A.T. Glaws, T.M. Wildey, and J.N. Shadid 69

σ2
z(y)/a2 ≤ 1−α, then the probability that the surrogate evaluation incorrectly placed the

sample is low. Otherwise, the sample is treated like a samples whose error bound intersects
the threshold.

This statistical approach provides an easily computed probabilistic error bound based on
the variation in the inactive subspace. It is based on the assumption that the distribution of
the variation is an aleatoric random variable which justifies the probabilistic interpretation.
In this paper, we are also interested in an epistemic, or reducible, interpretation of the
variation in the inactive subspace since the variation is bounded for any choice of active
subspace and can be reduced by increasing the dimension of the active subspace, provided
the associated eigenvalues of the additional dimensions are non-zero.

3.2. An Optimization-Based Approach. A second approach for estimating the
error from the dimension reduction is to build a second response surface for dimension
truncation error for each point in the active subspace. Given y in the active subspace, the
goal is to find the point in the inactive subspace which results in the greatest deviation from
the average

z∗(y) = arg max
z

1
2

(f (W1y +W2z)− g(y))2
. (3.3)

The error bound for a particular y is then set to be |f (W1y +W2z
∗)− g(y)|. Any opti-

mization technique can be used to find z. For the results in Section 4, the trust region
conjugate gradient method described in Algorithm 4.1 of [22] was applied to the inactive
variable. It should be noted that this algorithm effectively finds local maxima along the
inactive subspace for given values in the active subspace. In order to make this search more
global, multiple initial guesses for each active variable can be used. In fact, the random
sampling used in Algorithm 2 can serve as initial guesses for the optimization algorithm.
Thus, the optimization approach requires more model evaluations than the statistical ap-
proach, but it should also provide more robust and reliable bounds on the variation in the
inactive subspace.

4. Results.

4.1. Laminar 1-D Channel Flow Problem. The first model examined is a steady-
state, two-dimensional channel flow problem. In this problem, an incompressible fluid is
flowing between two parallel plates down an infinitely long channel. No slip conditions are
applied along the walls of the channel and a pressure drop is imposed along the channel to
drive the flow. The momentum and continuity equations for this problem are

ρu · ∇u− µ∇2u+∇ (p+ p0) = 0 (4.1)

∇ · u = 0 (4.2)

where the input model parameters are the fluid viscosity µ, density ρ, and the pressure drop
∂p0
∂x . For convenience, these inputs are written in a single input vector

x =
[
µ ρ ∂p0

∂x

]T
. (4.3)

As shown in Figure 4.1, the fully formed velocity profile is parabolic and can be found
analytically to be

u(y) =
1
2
H2 1

µ

∂p0

∂x

(
1−

(y
H

)2
)

(4.4)

70 Active Subspaces for CFD/MHD

Fig. 4.1: The set up of the one-dimensional channel flow problem. The fully-formed velocity
profile is parabolic and parallel to the channel. Integrating across the channel yields the
average flow velocity.

Integrating this velocity profile across the channel (assume the channel has width 2H) yields
the the average flow velocity

uavg(x) =
2
3
H3 1

µ

∂p0

∂x
. (4.5)

This will be the quantity of interest that is examined for this problem.

(a) Eigenvalues (b) Eigenvectors

Fig. 4.2: The eigenvalues and eigenvectors resulting from the applying Algorithm 1 to the
channel flow problem.

In order to restrict the problem to laminar flow, each of the parameters were chosen from
the interval [0.5, 10] with uniform probability. The eigenvalues and eigenvectors calculated
in Algorithm 1 and which are used to define the active and inactive subspaces are shown in
Figure 4.2.

First, we see that the third eigenvalue is nearly zero which implies that its associated
eigenvector has very little impact on the quantity of interest. The entries of this eigenvector
define a direction in the parameter space which is nearly equivalent to changes only in the
density. Thus, variations in the physical parameter ρ have essentially no impact on the
quantity of interest. This conclusion is obvious upon examining Equation 4.5. However,
results such as this may not be obvious in problems without analytic solutions but can
provide valuable insight into the behavior of the model.

Next, we consider the two eigenvectors which do contribute to the average flow velocity.
The eigenvector associated with the dominant eigenvalue defines a direction in the parameter
space where changes in the viscosity are matched by equal but opposite changes in the pres-
sure drop. Relating this to the analytic quantity of interest, we see an inverse relationship

A.T. Glaws, T.M. Wildey, and J.N. Shadid 71

between these two parameters. Thus, it is logical that the most dramatic change in uavg is in
the direction of the first eigenvalue. The second eigenvector represents equal changes in the
viscosity and the pressure drop. Traveling along this direction in the parameter space can
impact the quantity of interest (consider adding 1 to each term when µ = 1 and ∂p0

∂x = 2).
However, this change will not be as dramatic as changes resulting from moving along the
first eigenvector. Furthermore, there are points in the parameter space where movement
along the second eigenvector result in no change in the average flow velocity (µ = ∂p0

∂x).
By focusing on smaller regions of the parameter domain, further insight into the behavior

of the active subspaces is obtained. Recall that the original problem set up selected input
values between 0.5 and 10.0 from a uniform distribution. Figure 4.3 contain the eigenvalues
and two dominant eigenvectors for three small parameter ranges. The first subset uses
viscosity values in a small interval around 10 and pressure drop values in a small interval
around 1. The second subset uses a small interval around 1 for both µ and ∂p0

∂x . The last
subset uses viscosity values around 1 and pressure drop values around 10. Since the quantity
of interest is independent of the fluid density, ρ is randomly selected from the full domain
in all three plots.

(a) µ ≈ 10 and ∂p0
∂x
≈ 1. (b) µ ≈ 1 and ∂p0

∂x
≈ 1.

(c) µ ≈ 1 and ∂p0
∂x
≈ 10.

Fig. 4.3: The eigenvalues and two dominant eigenvectors for three small regions of the
domain. Note that ρ can be selected from its full domain since it does not influence the
quantity of interest.

The first thing to notice is that for all three domains, the gap between the first and
second eigenvalue is much larger than in the case of the full parameter domain. This implies
that for all three cases, the first eigenvector will account for a much larger portion the
total variation in the quantity of interest. However, each of the domains have different
eigenvectors. For large µ and small ∂p0

∂x , the dominant eigenvector is weighted heavily in
the direction of the pressure drop. Given the inverse relationship of these two parameters in
Equation 4.5, we would expect the output to be more sensitive to variations in the smaller
parameter. The situation is reversed in the case of a small viscosity and large pressure
drop. Finally, when the two parameters are approximately equal, the result mimics the full
domain.

Figure 4.4 contains scatter plots of the quantity of interest against the first active vari-

72 Active Subspaces for CFD/MHD

able for the full parameter domain and the three small subsets of the domain discussed
above. The full domain produces a relatively strong relationship between the average flow
velocity and the active variable. However, there is some variation which is due to influence
from the other eigenvectors. The three small domains result in extremely tight linear rela-
tionships between the output and the active variables. Constructing the active subspaces
attempts to find a linear relationship between the inputs which can accurately describe the
global behavior of the model output. This linear approximation is strong over small regions,
but will start to break down as the domain is expanded. Furthermore, additional linear
relationships (that is, the other eigenvectors) serve as correction terms. In the case of small
domains, very little correction is necessary as shown by the rapid decay in the eigenvalues.
However, over the full domain, the correction is significant as is seen by the variation of the
output with respect to just the first active variable.

Fig. 4.4: Scatter plots of the average flow velocity for the full parameter range and three
subsets of the parameter domain.

4.2. Magnetohydrodynamics Hartmann Flow Problem. The Hartmann flow
problem is similar to the channel flow problem discussed above with the addition of a
transverse magnetic field acting on the ionized fluid. The magnetic field acts as a force
resisting the fluid flow so that the momentum equation includes a Lorentz force term. This
term exerts a force whenever the magnetic field lines are bent (non-zero curl).

ρu · ∇u− µ∇2u+∇ (p+ p0) = − 1
µ
B × (∇×B) (4.6)

∇ · u = 0 (4.7)

The fluid flow induces a magnetic field in the horizontal direction. The induction equa-
tion for the magnetic field is given by

u · ∇B =
η

µ
∇2B +B · ∇u (4.8)

∇ ·B = 0. (4.9)

The model inputs are the fluid viscosity µ, density ρ, pressure drop ∂p0
∂x , magnetic

resistivity η, and applied magnetic field B0. As before, the input parameters are written
into a single input vector

x =
[
µ ρ ∂p0

∂x η B0

]T
. (4.10)

A.T. Glaws, T.M. Wildey, and J.N. Shadid 73

For this study, the parameters were allowed to range between 0.5 and 3.0 with a uniform
distribution applied.

Similar to the channel flow problem, the Hartmann problem has an analytic solution.
However, solutions were obtained using Drekar [23]. There are several quantities of interest
that can be extracted from this problem. The two that are examined here are the average
flow velocity

uavg(x) =
∂p0

∂x

B0
√
ηµ coth

(
B0√
ηµ

)
− ηµ

2B0µ2
(4.11)

and the induced magnetic field

Bind(x) =
∂p0

∂x

µ0

(
B0 − 2

√
ηµ tanh

(
B0

2
√
ηµ

))
2B2

0

. (4.12)

(a) Eigenvalues

(b) Eigenvectors

Fig. 4.5: The eigenvalues and eigenvectors for the average flow velocity quantity of interest.

Figure 4.5 provides the eigenvalues and eigenvectors associated the average flow velocity.
As with the channel flow problem, the fifth eigenvalue is nearly zero and its associated
eigenvector corresponds directly to the fluid density. This lack of influence is again apparent
from examination of Equation 4.11. Additionally, the first two eigenvectors closely resemble
the first two eigenvectors in the channel flow problem. The entries associated with the
magnetic inputs are small. The next two eigenvectors are driven almost exclusively by the
magnetic inputs.

Next, we examine the behavior of the induced magnetic field. The eigenvalue and
eigenvectors are given by Figure 4.6. In this case, we do not see much decay in the eigenvalues
suggesting the lack of a useful active subspace. The first eigenvector contains contributions
from all parameters (except for ρ, which we no has no contribution to the quantity of

74 Active Subspaces for CFD/MHD

(a) Eigenvalues

(b) Eigenvectors

Fig. 4.6: The eigenvalues and eigenvectors for the induced magnetic field quantity of interest.

interest) in approximately equal magnitudes. The eigenvalues associated with the next
three eigenvectors are nearly identical implying that each contributes comparable variation
to the output.

4.3. SARANS Approximation of Fully-Developed 3-D Flow in Pipe. In this
section, we consider fully developed flow in a three-dimensional circular pipe. The flow
is considered fully developed when the radial velocity profile does not change with axial
location in the pipe. This condition is achieved through periodic inflow-outflow boundary
conditions and applying a momentum source term to force the flow in the axial direction.

Drekar::CFD solutions were obtained by solving an SARANS formulation with stabi-
lized finite elements using a direct-to-steady-state approach on a mesh containing 168,000
elements with 1M unknowns [24]. The tube diameter is (D = 0.01 m) and pipe axis is
aligned with the x-direction. Two views of a slightly coarser computational mesh are shown
in Figure 4.7.

Fig. 4.7: Two cut-away views of a 62,000 element pipe mesh.

A.T. Glaws, T.M. Wildey, and J.N. Shadid 75

We assume that six of the model parameters are uniformly distributed over parameters
ranges given by:

ρ ∈ [0.5, 2], µ ∈ [5E-7, 5E-6], −∂p
∂z
∈ [2.5, 7.5],

Cp ∈ [0.1, 10], κ ∈ [5E-7, 5E-6], P rt ∈ [0.1, 10],

where Cp is the specific heat, κ is the thermal conductivity, and Prt is the turbulent Prandtl
number. This study considers the wall temperature at the exit of the pipe, Tw, as the QoI.
We use a Latin hypercube strategy to produce 80 samples over the range of the input
parameters and use Drekar::CFD to compute the QoI and the gradient of the QoI at these
sample points. Each of these function evaluations is a direct-to-steady-state solve of the 3D
coupled SARANS turbulent fluid flow and heat transfer problem. In Figure 4.8, we see a

(a) Eigenvalues (b) Eigenvectors

Fig. 4.8: The eigenvalues and eigenvectors for the computed quantity of interest.

relatively smooth decay of the eigenvalues, but no obvious choice of truncation for an active
subspace.

4.4. Bounds on Probabilities and Distributions for Hartmann Problem. In
this section, we consider the Hartmann problem described in Section 4.2 and apply the
statistical and optimization-based approaches for estimating the dimension truncation error
to provide upper and lower bounds on probabilistic quantities of interest. The response
surface approximations for the model and the bounds are constructed using radial basis
functions on the active variables. Recall that these active variables are constructed using
the eigenvectors of the active subspace analysis. Thus, the eigenvalues can be used in
determining the length scales of the radial basis functions along each axes in the reduced
space. For each quantity of interest, we choose threshold values so that the probability of
the response exceeding these values is small. Since both quantities of interest have analytic
solutions, the true probabilities can be computed using a large number of Monte Carlo
samples over the full parameter space.

In Table 4.1, we give the estimates of the probability of each quantity of interest ex-
ceeding a particular threshold as well as the bounds on the probabilities using both error
bound approaches for reduced subspaces of varying dimension (n = 1, 2, 3). The objective

76 Active Subspaces for CFD/MHD

P [uavg > 1.0] = 0.034
n = 1 n = 2 n = 3

Response Surface Approximation 0.027 0.037 0.033
Optimization Bound [0.003, 0.142] [0.026, 0.053] [0.032, 0.034]

Variance Bound (α = 0.95) [0.001, 0.168] [0.017, 0.064] [0.031, 0.035]

P [Bind > 0.2] = 0.011
n = 1 n = 2 n = 3

Response Surface Approximation 0.008 0.008 0.012
Optimization Bound [0.001, 0.068] [0.002, 0.032] [0.010, 0.017]

Variance Bound (α = 0.95) [0.001, 0.094] [0.001, 0.048] [0.006, 0.029]

Table 4.1: Probability bounds using the optimization and variance bounds for increasing
active subspace dimension.

here is not to select the optimal dimension truncation, but to account for the error induced
by the dimension truncation.

Given the error bounds using either statistical or the optimization-based approach, it
is relatively easy to compute bounds for a range of probability levels for each quantity of
interest. Therefore, we can easily generate cumulative distribution functions (CDF) with
upper and lower bounds. In Figures 4.9 and 4.10, we plot the results for the average x-
velocity and the average induced magnetic field respectively.

(a) Statistical approach

(b) Optimization approach

Fig. 4.9: Bounds on CDF of average x-velocity using the statistical approach (top) and the
optimization-based approach (bottom) for n = 1, 2, 3.

A.T. Glaws, T.M. Wildey, and J.N. Shadid 77

(a) Statistical approach

(b) Optimization approach

Fig. 4.10: Bounds on CDF of average induced magnetic field using the statistical approach
(top) and the optimization-based approach (bottom) for n = 1, 2, 3.

In both Table 4.1 and Figures 4.9 and 4.10, we see that introducing another dimension
to the active subspace tightens the bounds on the error. Recall that the error in the n-
dimensional response surface due to the dimension truncation is on the order of the sum of
the last m − n eigenvalues. Comparing the two quantities of interest, we see the eigenval-
ues from the average flow velocity decay much more rapidly than those from the induced
magnetic field. Thus, for the same value of n, the error bounds are much tighter for uavg.

5. Conclusion. We have provided a concise overview of active subspaces and demon-
strated the process of identifying an active subspace. We applied this methodology to a
set of problems in CFD and MHD and observed a small reduction in dimension for each
problem. We also showed how to use optimization and statistical approaches to estimate
the dimension truncation error and showed how these estimates can be used to compute
upper and lower bounds on probabilistic quantities of interest. Future work will involve
problems with a larger number of parameters and an approach to estimate the total error
(discretization, interpolation, dimension reduction, etc.) in a sample of a response surface
in the active subspace.

REFERENCES

[1] I. Babuška, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial dif-
ferential equations with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005–1034
(electronic).

[2] J. Breidt, T. Butler, and D. Estep, A computational measure theoretic approach to inverse sensi-
tivity problems I: Basic method and analysis, SIAM J. Numer. Analysis, 49 (2012), pp. 1836–1859.

[3] C. Bryant, S. Prudhomme, and T. Wildey, Error decomposition and adaptivity for response surface
approximations from PDEs with parametric uncertainty. To appear in SIAM/ASA J. Uncert.
Quant., 2015.

[4] H.-J. Bungartz and M. Griebel, Sparse grids, Acta Numerica, 13 (2004), pp. 147–269.

78 Active Subspaces for CFD/MHD

[5] T. Butler, P. Constantine, and T. Wildey, A posteriori error analysis of parameterized linear
systems using spectral methods, SIAM. J. Matrix Anal. Appl., 33 (2012), pp. 195–209.

[6] T. Butler, C. Dawson, and T. Wildey, A posteriori error analysis of stochastic spectral methods,
SIAM J. Sci. Comput., 33 (2011), pp. 1267–1291.

[7] , Propagation of uncertainties using improved surrogate models, SIAM/ASA Journal on Uncer-
tainty Quantification, 1 (2013), pp. 164–191.

[8] D. Cacuci, Sensitivity and Uncertainty Analysis: Theory, vol. I, Chapman & Hall/CRC, 1997.
[9] P. G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Stud-

ies, SIAM, 2014.
[10] P. G. Constantine, M. Emory, J. Larsson, and G. Iaccarino, Exploiting Active Subspaces to

Quantify Uncertainty in the Numerical Simulation of the HyShot II Scramjet, arXiv, (2014).
[11] P. G. Constantine, B. Zaharatos, and M. Campanelli, Discovering an active subspace in a single-

diode solar cell model, arXiv, (2014).
[12] D. Estep and D. Neckels, Fast and reliable methods for determining the evolution of uncertain

parameters in differential equations, J. Comput. Physics, 213 (2006), pp. 530–556.
[13] B. Ganis, H. Klie, M. F. Wheeler, T. Wildey, I. Yotov, and D. Zhang, Stochastic collocation

and mixed finite elements for flow in porous media, Comput. Methods Appl. Mech. Engrg, 197
(2008), pp. 3547 – 3559. Stochastic Modeling of Multiscale and Multiphysics Problems.

[14] T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature, Computing, 71 (2003),
pp. 65–87.

[15] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer Verlag, New
York, 2002.

[16] J. Jakeman and T. Wildey, Enhancing adaptive sparse grid approximations and improving refine-
ment strategies using adjoint-based a posteriori error estimates, Journal of Computational Physics,
280 (2015), pp. 54 – 71.

[17] C. Lanczos, Linear Differential Operators, Dover Publications, 1997.
[18] T. W. Lukaczyk, P. G. Constantine, F. Palacios, and J. J. Alonso, Active subspaces for shape

optimization, in 10th AIAA Multidisciplinary Design Optimization Conference, American Institute
of Aeronautics and Astronautics, 2014.

[19] X. Ma and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm for the solution
of stochastic differential equations, J. Comput. Phys., 228 (2009), pp. 3084–3113.

[20] G. I. Marchuk, Adjoint equations and analysis of complex systems, Kluwer, 1995.
[21] G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Algo-

rithms in Nonlinear Problems, CRC Press, Boca Raton, FL, 1996.
[22] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2006.
[23] R. Pawlowski, J. Shadid, T. Smith, E. C. Cyr, and P. Weber, Drekar::CFD-a turbulent fluid-flow

and conjugate heat transfer code: Theory manual version 1.0, Tech. Rep. SAND2012-2697, Sandia
National Laboratories, March 2012.

[24] J. N. Shadid, T. M. Smith, E. C. Cyr, T. M. Wildey, and R. P. Pawlowski, Stabilized FE
Simulation of Prototype Thermal-Hydraulics Problems with Integrated Adjoint-based Capabilities.
Journal of Computational Physics, 2015.

[25] X. Wan and G. Karniadakis, Beyond Wiener-Askey Expansions: Handling Arbitrary PDFs, Journal
of Scientific Computing, 27 (2006), pp. 455–464.

[26] D. Xiu and G. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations,
SIAM J. Sci. Comput., 24 (2002), pp. 619–644.

CCR Summer Proceedings 2015 79

A TIME-PARALLEL METHOD FOR THE SOLUTION OF
PDE-CONSTRAINED OPTIMIZATION PROBLEMS

MONA HAJGHASSEM∗, ERIC C. CYR† , AND DENIS RIDZAL‡

Abstract. We study a time-parallel approach to solving quadratic optimization problems with linear
time-dependent partial differential equation (PDE) constraints. These problems arise in formulations of
optimal control, optimal design and inverse problems that are governed by parabolic PDE models. They
may also arise as subproblems in algorithms for the solution of optimization problems with nonlinear time-
dependent PDE constraints, e.g., in sequential quadratic programming methods. We apply a piecewise linear
finite element discretization in space to the PDE constraint, followed by the Crank-Nicolson discretization
in time. The objective function is discretized using finite elements in space and the trapezoidal rule in time.
At this point in the discretization, auxiliary state variables are introduced at each discrete time interval,
with the goal to enable: (i) a decoupling in time; and (ii) a fixed-point iteration to recover the solution of
the discrete optimality system. The fixed-point iterative schemes can be used either as preconditioners for
Krylov subspace methods or as smoothers for multigrid (in time) schemes. We present promising numerical
results for both use cases.

1. Introduction. Optimal control problems governed by time-dependent partial dif-
ferential equations (PDEs) lead to large-scale optimization problems. The cost of numeri-
cally solving these problems is proportional to the size of the discretized time domain. In
most numerical approaches the time discretization serializes the solution process, and intro-
duces a bottleneck that cannot be overcome by additional parallelization in space. To speed
up the solution process for linear-quadratic optimal control problems governed by parabolic
PDEs, we study a time-domain decomposition approach with the potential to introduce time
parallelism into the optimization algorithm. Parallelization in time approximates parts of
the solution later in time simultaneously with the parts of the solution earlier in time.

In Gander’s review article on parallel time integration [4], time-parallel methods are
classified into four groups: methods based on multiple shooting; methods based on domain
decomposition and waveform relaxation; space-time multigrid methods; and direct time-
parallel methods. Our approach is based on domain decomposition. However, we note from
the onset that our goal is the iterative solution of optimality systems that comprise discrete
PDE systems, and not the solution of discrete PDE systems on their own as in [4] and the
references cited therein. This introduces opportunities for time parallelization that have not
been explored in the literature. Our work is closely related to the work of Heinkenschloss [5]
and Comas [3], who consider time-domain decomposition (and multiple shooting) methods
for optimal control problems to reduce storage demands imposed by the discretization of
the state variables. In contrast, our work focuses on preconditioners that are appropriate
for time parallelization. In principle, it is possible to balance storage reduction and time
parallelization in a single scheme, which we plan to study in the future.

To streamline the presentation, we consider the Neumann boundary control of the one-
dimensional linear heat equation. For the spatial discretization of the heat equation we
use piecewise linear finite elements. For the time discretization we use the Crank-Nicolson
method. The objective function is discretized using finite elements in space and the trape-
zoidal rule in time. At this point of the discretization process, we introduce auxiliary state
variables ūi for each time interval, corresponding to the original discrete state variables ui,
and impose the time-continuity constraint equations ūi = ui. Additionally, the auxiliary
variables ūi are incorporated into the objective function. The first-order necessary and suffi-

∗University of Maryland Baltimore County, mona4@umbc.edu
†Sandia National Laboratories, Computational Mathematics, eccyr@sandia.gov
‡Sandia National Laboratories, Optimization and Uncertainty Quantification, dridzal@sandia.gov

80 A Time-Parallel Method for PDE-Constrained Optimization

cient optimality conditions for the discretized problem form a linear system Ax = b, where
x is a vector composed of the state variables, auxiliary state variables, control variables, the
Lagrange multipliers associated with the state equation and the Lagrange multipliers associ-
ated with the continuity equations. With a suitable ordering of the necessary and sufficient
optimality conditions, we arrive at a block tridiagonal system of optimality conditions, pre-
sented in Section 2. The block tridiagonal structure motivates fixed-point iterations based
on matrix splittings, which are discussed in Section 3. For instance, the optimality sys-
tem can be solved using the GMRES method and time-parallel fixed-point preconditioners,
such as the Jacobi scheme or the red-black Gauss-Seidel scheme. Fixed-point iterations
can also be used as smoothers in the development of new multigrid in time techniques. In
Section 4 we present promising numerical results for both use cases. We demonstrate the
potential effectiveness of the Jacobi scheme as a time-parallel preconditioner for linear sys-
tems arising in, e.g., inexact sequential quadratic programming (SQP) methods. We also
demonstrate the smoothing properties of Jacobi and Gauss-Seidel iterations, with a future
goal of incorporating them in a multigrid in time scheme.

2. Neumann control of the one-dimensional heat equation. We consider the
optimization problem

min
1
2

∫ T

0

z2(t)dt+
α

2

∫ T

0

∫ 1

0

(u(t, x)− s(t, x))2dxdt (2.1)

governed by the one-dimensional linear heat equation

∂

∂t
u(t, x)− ∂2

∂x2
u(t, x) = f(t, x) t ∈ (0, T), x ∈ (0, 1), (2.2a)

∂

∂x
u(t, 0) = z(t), t ∈ (0, T), (2.2b)

∂

∂x
u(t, 1) = r(t), t ∈ (0, T), (2.2c)

u(0, x) = u0(x), x ∈ (0, 1). (2.2d)

The functions u and z are called state and control, respectively. The above problem is posed
in Hilbert space, as described in [5]. We assume that (2.2) admits a unique solution u for
every control z and that the above optimal control problem has a solution, see [3, 5].

We discretize the state equation in space by applying piecewise linear finite elements
with Nx spatial intervals on the [0, 1] interval. We arrive at the semi-discrete problem

min
1
2

∫ T

0

z2(t)dt+
α

2

∫ T

0

‖u(t)− s(t)‖2dt (2.3)

subject to

M
∂

∂t
u(t) + Su(t) = f(t) +Wz(t) t ∈ (0, T), (2.4a)

u(0) = u0, (2.4b)

where M and S are the mass and stiffness matrices, respectively, of size (Nx+1)× (Nx+1),
f(t) is an (Nx + 1)-vector that includes the Neumann boundary term r(t), and W is an
(Nx + 1)× 1 operator that applies the control as the Neumann condition at x = 0. We let
‖ · ‖ denote a discrete norm over space, defined in this case as ‖u‖2 = uTMu. To avoid
vector notation we introduce a hierarchical notation for functions, based on the space or

M. Hajghassem, E. C. Cyr, and D. Ridzal 81

space-time discretization. We write w(x, t) for a continuous function, w(t) for its space
discretization, and wi for its space-time discretization, where i is a time index.

We apply the θ-method to discretize in time the semi-discrete constraint equation (2.4);
in numerical experiments, we will use θ = 1/2, i.e., the Crank-Nicolson method. We apply
the trapezoidal rule to approximate the time integrals in the objective function (2.3). The
time domain is divided into N intervals [ti, ti+1], i = 0, 1, ..., N − 1. At the time domain
interfaces, auxiliary variables ūi, i = 1, ..., N − 1, are introduced to enforce time continuity
of the state in the time-domain decomposition process. Additionally, these variables are
incorporated in the objective function, and used simultaneously with the state variables ui.
The control variables z̄i are scalar quantities, defined in each subinterval [ti, ti+1]. The fully
discretized optimal control problem can be written as

min J(u, ū, z̄) =
∆t
2

N−1∑
i=0

(z̄i)2

+
α∆t

4

N−1∑
i=0

(‖ūi − si‖2 + ‖ui+1 − si+1‖2) (2.5)

subject to

M
ui+1 − ūi

∆t
= − S(θui+1 + (1− θ)ūi) + θ(fi+1 +Wz̄i) + (1− θ)(fi +Wz̄i)

ūi = ui i = 0, 1, . . . , N − 1,
(2.6)

where ∆t is the time step. By rearranging the constraint equation we obtain:

(M + ∆tθS)ui+1 = (M −∆t(1− θ)S)ūi + ∆t(Wz̄i + θfi+1 + (1− θ)fi)
ūi = ui i = 0, 1, . . . , N − 1.

(2.7)

Note that the minimizer of the time-domain decomposition formulation is also a minimizer
of the discretized continuous time formulation. To see this let u∗i , ū

∗
i and z̄∗i satisfy Eq. (2.5)

subject to Eq. (2.7). Then eliminating the auxiliary variable ū∗i using the continuity condi-
tion, the state constraint implies

(M + ∆tθS)ui+1 = (M −∆t(1− θ)S)ui + ∆tz̄i + ∆t(θfi+1 + (1− θ)fi). (2.8)

This is an approximation of Eq. (2.4) using the θ-method. Similarly, using the continuity
condition to eliminate ū∗i from Eq. (2.5) gives the trapezoidal-rule approximation of the
objective function from Eq. (2.3).

The motivation for introducing the continuity condition is twofold. First, including it
in the discretization is more general than enforcing it by construction. Given an imple-
mentation of the discontinuous case it is easy to construct the continuous case. Second,
explicit treatment of the continuity condition as a state equation exposes the condition
to the optimization algorithm. This enables a lifted Newton method with respect to the
time-continuous problem [1], which may (in future studies) provide additional algorithmic
advantages.

82 A Time-Parallel Method for PDE-Constrained Optimization

The Lagrangian function for the above discretized problem is given by

L(u, ū, z̄, λ, λ̄) =
∆t
2

N−1∑
i=0

(z̄i)2

+
α∆t

4

N−1∑
i=0

(‖ūi − si‖2 + ‖ui+1 − si+1‖2
)

+
N−1∑
i=0

(λi+1,Kūi + ∆tW z̄i + ∆t(θfi+1 + (1− θ)fi)− Cui+1)

+
N−1∑
i=0

(
λ̄i+1, ui − ūi

)
, (2.9)

where C = M +∆tθS and K = M −∆t(1−θ)S. The optimality conditions can be obtained
by setting the partial derivatives of L with respect to ūi, z̄i, λi, λ̄i, and ui to zero. The
partial derivatives of the Lagrangian read:

∂L

∂ūi
=
α∆t

2
M(ūi − si) +KTλi+1 − λ̄i+1, for i = 0 . . . N − 1;

∂L

∂z̄i
= ∆t(z̄i +WTλi+1), for i = 0 . . . N − 1;

∂L

∂λi
= Kūi−1 + ∆tW z̄i−1 + ∆tθfi + (1− θ)fi−1 − Cui, for i = 1 . . . N ;

∂L

∂λ̄i
= ui−1 − ūi−1, for i = 2 . . . N ;

∂L

∂ui
=
α∆t

2
M(ui − si)− CTλi + λ̄i+1, for i = 1 . . . N.

(2.10)

Notice for brevity we have not been precise with respect to the fringe cases (e.g., i = 0,
i = N).

The Lagrangian defined in Eq. (2.9) uses an identity matrix in space to enforce continuity
in time (e.g., enforcing the constraint ūi = ui). This implies the adjoint equations correspond
to

CTλi − λ̄i+1 =
α∆t

2
M(ui − si) (2.11)

KTλi+1 − λ̄i+1 =
α∆t

2
M(ūi − si). (2.12)

The equations represent adjoint time continuity conditions. In the first equation the adjoint
variables λi and λ̄i+1 have different scaling. This can be optionally rectified by changing the
state continuity condition to C(ūi − ui) = 0. In the numerical results section this condition
is used for the smoothing study, while the original condition ūi = ui is used for the GMRES
study.

The optimality conditions lead to a linear system, Ax = b. The equations and variables
in the linear system can be ordered in a variety of ways. We take adjoint variables to be λi
and λ̄i instead of λi+1 and λ̄i+1. We consider the following ordering for the vector x,

xT =
(

. . . ūi z̄i λi+1 λ̄i+1 ui+1 . . .
)
. (2.13)

M. Hajghassem, E. C. Cyr, and D. Ridzal 83

This presents the ordering in the interior of the time domain focusing on the time interval
[ti, ti+1]. Again for simplicity we ignore the ordering for i = 0 and i = N . The matrix A
corresponding to the vector x is of size N ×N blocks, and reads:

A =

D U
L D U

.
L D U

L D

 , (2.14)

where

D =

α1∆t

2 M 0 KT −I 0
0 ∆tI ∆tWT 0 0
K ∆tW 0 0 −C
−I 0 0 0 0
0 0 −CT 0 α1∆t

2 M

 (2.15)

and

L =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 I
0 0 0 0 0

 , U =

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 I 0

 . (2.16)

The right-hand side vector b is:

bT =
(

0 0 −F1 0 α1∆t
2 s1 . . . 0 0 −FN 0 α1∆t

2 sN
)
. (2.17)

3. Time-domain decomposition preconditioners. As seen in Section 2, the system
of optimality conditions for the time-dependent optimal control problem leads to a block
tridiagonal linear system Ax = b. This system can be solved using the GMRES method
of Saad and Schultz [8], combined with various preconditioners. In this section we discuss
the construction of time-domain decomposition preconditioners based on matrix splitting
methods, such as Jacobi or Gauss-Seidel.

We will use the ‘right-preconditioned’ form of Ax = b,

AP−1y = b, x = P−1y, (3.1)

where P denotes the preconditioning matrix. We use the diag(·) operator to denote the
N × N block diagonal matrix composed of its arguments. Similarly, we introduce opera-
tors subdiag(·) and supdiag(·), which denote N × N block subdiagonal and superdiagonal
matrices composed of the operator arguments. We define the matrices:

D = diag(D, . . . ,D); L = subdiag(L, . . . , L); U = supdiag(U, . . . , U);

and write the matrix A as their sum, A = L + D + U. Moreover, we can define precon-
ditioners by zeroing some of the entries of the matrices L and U, as follows. First, for a
positive integer j, we introduce the matrices:

L(j) = subdiag(L, . . . , L, 0
j
, L, . . . , L, 0

2j
, L, . . . , L, 0

3j
, . . .); and

U(j) = supdiag(U, . . . , U, 0
j
, U, . . . , U, 0

2j
, U, . . . , U, 0

3j
, . . .).

84 A Time-Parallel Method for PDE-Constrained Optimization

Second, recall that N denotes the total number of time steps, and let Nt denote the number
of time subdomains. In L(j) and U(j) we zero the entries of L and U in locations that are
the integer multiples of j = bN/Ntc. The locations j, 2j, etc., indicate the boundaries of
the time subdomains. In other words, they indicate the breaking of time continuity in the
state variables. This leads to the definition of three preconditioners:

Pjac = L(j) + D + U(j) : Jacobi;
Pfgs = L + D + U(j) : forward Gauss-Seidel; and
Pbgs = L(j) + D + U : backward Gauss-Seidel.

For example, for the number of time steps N = 10 and the number of time sudomains
Nt = 2, we have that j = 5, and the Jacobi preconditioner assumes the following form:

Pjac =

D U
L D U

L D U
L D U

L D
D U
L D U

L D U
L D U

L D

. (3.2)

Similarly, the forward Gauss-Seidel preconditioner is given by

Pfgs =

D U
L D U

L D U
L D U

L D
L D U

L D U
L D U

L D U
L D

, (3.3)

where we have emphasized the “tying” block (in bold) on the subdiagonal, and the backward
Gauss-Seidel preconditioner is given by

Pbgs =

D U
L D U

L D U
L D U

L D U
D U
L D U

L D U
L D U

L D

, (3.4)

where we have emphasized the tying block (in bold) on the superdiagonal. The Jacobi pre-
conditioner parallelizes trivially, as each of the blocks corresponding to the time subdomains

M. Hajghassem, E. C. Cyr, and D. Ridzal 85

can be inverted independently, while the Gauss-Seidel preconditioners do not. Nonetheless,
it is possible to parallelize the application of Gauss-Seidel preconditioners through a so-called
“red-black” reordering, which we will investigate in a future publication.

4. Numerical results. This section examines the performance of the three precondi-
tioners for the optimal control problem given in Section 2. We present four experiments.
The first experiment is designed to compare the effectiveness of our preconditioners with
those investigated in [5]. The second experiment studies the potential for their efficient use
in inexact SQP methods, such as [6]. The third experiment examines preconditioner perfor-
mance for a fixed size of time subdomains. The fourth experiment examines the smoothing
properties of our preconditioners, with the outlook for use in new multigrid in time methods
for PDE-constrained optimization.

Remark 4.1. For the given data z(t) = r(t) = 2π(1 − e−t), u0 = 0, and f(x, t) =
(4π2(1 − e−t) + e−t) sin(2πx), the solution of the constraint equation (2.2) is u(t, x) =
sin(2πx)(1 − e−t). We verify our finite element implementation of the constraint equation
by using this manufactured solution, as follows. If we consider a sufficiently fine time
discretization, we observe second order convergence of the numerical PDE solution in space,
and if we consider a sufficiently fine spatial discretization, we get second order convergence
in time for the Crank-Nicolson method (θ = 1/2). The implementation of the optimal control
problem is verified using manufactured solutions as well, where we have studied convergence
of the optimal state u∗ in space and time.

In all cases below, f(t, x) = (4π2(1−e−t)+e−t) sin(2πx), r(t) = 2π(1−e−t), u0(x) = 0,
α2 = 0, s1 = 1, and the initial guess for the iterative solution of the optimality system is
zero. We use the Crank-Nicolson scheme for the time discretization.

Experiment 1. Here we compare the performance of our preconditioners with similar
preconditioners investigated in [5]. We consider the penalty parameter α1 = 103. We use
Nx = 10 spatial intervals and N = 30 time intervals. The GMRES method is applied with
the 2-norm residual tolerance of 10−7. The maximum number of iterations for GMRES is
set to 100.

The iteration numbers in Figure 4.1 for the forward and backward Gauss-Seidel precon-
ditioners are very close to those published in [5, Fig. 4]. This implies that our Gauss-Seidel
preconditioners could be used for storage reduction, similar to [5]. Unfortunately, their ap-
plication, as implemented here, does not parallelize in time. In contrast, the application of
the Jacobi preconditioner, which was not studied in [5], parallelizes in time.

Experiment 2. Here we demonstrate the potential effectiveness of the Jacobi scheme as
a time-parallel preconditioner for linear systems arising in, e.g., inexact sequential quadratic
programming (SQP) methods. The key to efficiency in these algorithms is the use of very
coarse, i.e., inexact, iterative solves for the optimality systems. It is reported in [7, 6] that
residual tolerances as large as 0.5 can be handled robustly and efficiently by inexact SQP
schemes, and that tolerance levels of 10−2 or 10−3 are optimal for many applications. We
let Nx = 100 and N = 100, set the maximum number of GMRES iterations to 200, and
keep all other parameters the same as in Experiment 1. While we are particularly interested
in the performance of the Jacobi scheme, we report forward Gauss-Seidel results as well, see
Figure 4.2.

Table 4.1 shows the GMRES iterations at which the relative residual drops below 10−3

and 10−2, respectively, for both preconditioners. For the Jacobi preconditioner, the potential
speedup due to time parallelization can be defined as the ratio of the number of time
subdomains and the iteration numbers reported in Table 4.1. In the conservative case
where the relative residual is 10−3, the potential parallel speedup for 50 time subdomains
is 50/18 = 2.8, while the speedup for the relative residual of 10−2 is 50/7 = 7.1. These

86 A Time-Parallel Method for PDE-Constrained Optimization

0 20 40 60 80 100 120
10

−3

10
−2

10
−1

10
0

Iteration number

R
el

at
iv

e
re

si
du

al

no preconditioning

Nt=3
Nt=10
Nt=15
Nt=30

0 10 20 30 40 50 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Jacobi

Nt=3

Nt=10

Nt=15

Nt=30

0 5 10 15 20 25 30 35
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
el

at
iv

e
re

si
du

al

Forward GS

Nt=3
Nt=10
Nt=15
Nt=30

0 5 10 15 20 25 30 35
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
el

at
iv

e
re

si
du

al

Backward GS

Nt=3
Nt=10
Nt=15
Nt=30

Fig. 4.1: Convergence history of GMRES with Gauss-Seidel and Jacobi preconditioners for
Nx = 10, N = 30 and different numbers of time subdomains, Nt. The iteration numbers for
the forward and backward Gauss-Seidel preconditioners are very close to those published
in [5, Fig. 4].

results encourage a closer study of the time-domain decomposition Jacobi preconditioner in
the context of inexact SQP methods.

Nt 5 10 20 50 5 10 20 50
Forward GS 4 5 8 9 3 3 3 3

Jacobi 6 8 10 18 4 4 5 7

Table 4.1: The GMRES iteration number at which the relative residual drops below 10−3

(left part of the table) or 10−2 (right part of the table), for Nx = 100, N = 100 and different
numbers of time subdomains, Nt. For the relative residual of 10−3, the maximum parallel
speedup is 50/18 = 2.8, while the speedup for the relative residual of 10−2 is 50/7 = 7.1.

Experiment 3. Here we take Nx = 10, set the maximum number of GMRES iterations
to 100, set the relative residual tolerance to 10−7, and fix the number of time steps per
time subdomain to five, N/Nt = 5. We vary the total number of time steps from 25 to 200.
The performance of the Jacobi and forward Gauss-Seidel preconditioners is illustrated in
Figure 4.3. The backward Gauss-Seidel preconditioner performs similarly to the forward
Gauss-Seidel preconditioner, so we omit those results. Figure 4.3 demonstrates good itera-
tion scaling for both preconditioners as the total number of time steps increases. Going from

M. Hajghassem, E. C. Cyr, and D. Ridzal 87

0 20 40 60 80 100 120 140 160 180
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Jacobi

Nt=5

Nt=10

Nt=20

Nt=50

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
el

at
iv

e
re

si
du

al

Forward GS

Nt=5
Nt=10
Nt=20
Nt=50

Fig. 4.2: Convergence history of GMRES with the Jacobi and forward Gauss-Seidel pre-
conditioners for Nx = 100, N = 100 and different numbers of time subdomains, Nt. The
results are analyzed in Table 4.1.

25 to 200 total time steps, the number of iterations for the Jacobi preconditioner increases
from 16 to only 21, while the iteration increase for the forward Gauss-Seidel scheme is only
one, from 10 to 11.

0 5 10 15 20 25
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Jacobi

Nt=5, N=25

Nt=10, N=50

Nt=20, N=100

Nt=40, N=200

1 2 3 4 5 6 7 8 9 10 11
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Iteration number

R
e
la

ti
v
e
 r

e
s
id

u
a
l

Forward GS

Nt=5, N=25

Nt=10, N=50

Nt=20, N=100

Nt=40, N=200

Fig. 4.3: Convergence history of GMRES with the Jacobi and forward Gauss-Seidel pre-
conditioners for Nx = 10, N/Nt = 5, and different total numbers of time steps, N . Both
preconditioners show good iteration scaling as the total number of time steps increases.

Experiment 4. Here we present an empirical study of the the smoothing properties of our
preconditioners, based on error reduction, see e.g., [2]. The goal is to assess their potential
as smoothers for multigrid-in-time methods. By writing A = A + P−P, we obtain a new
form of Ax = b,

Px = (P−A)x + b, (4.1)

where P could be any of the above preconditioners. This form suggests a fixed-point itera-
tion,

Pxk+1 = (P−A)xk + b. (4.2)

88 A Time-Parallel Method for PDE-Constrained Optimization

We subtract equation (4.2) from (4.1) to find the error equation

P(x− xk+1) = (P−A)(x− xk). (4.3)

We introduce error vectors ek = x − xk and ek+1 = x − xk+1, multiply both sides of the
equation by the inverse of P, and arrive at the error update equation

ek+1 = (I−P−1A)ek. (4.4)

This fixed-point iteration converges if the spectral radius of the operator I − P−1A is less
than one. We do not expect this to hold in the optimal control context, however it is
informative to examine the error based on equation (4.4).

For all studies below we choose N = 100 and Nx = 100, and set the number of time
subdomains to Nt = 10. Additionally, instead of enforcing ūi = ui as the continuity
condition, we will use Cūi = Cui to improve the scaling of the Lagrange multipliers. The
starting condition e0 is a vector with each component randomly drawn from a uniform
distribution over the open interval (−1, 1). The goal is to seed the initial error with a range
of spectral content in both space and time. Then after applying the relaxation method
the resulting value empirically represents the smooth error. In the context of multilevel
methods, this smooth error would be handled with a coarse grid correction. Multilevel
schemes will be studied in a future publication.

We study the state and adjoint components of the error. Figure 4.4 has four plots of the
state error (left column) and four plots of the adjoint error (right column). The first row
shows the random initial condition. The second row gives a view of the error with respect
to time after five applications of the Jacobi smoothing operator. The third row shows a
colormap of the error in time and space after five iterations. The final row shows a similar
colormap after 100 iterations. Figures 4.5 and 4.6 contain similar sets of plots for forward
and backward Gauss-Seidel, respectively. There are two interesting features. First is the
scaling of the error, and its reduction with increasing iteration counts. All methods reduce
the error by at least an order of magnitude after 100 iterations. The second feature is the
spectral content of the error. For all the methods, after five iterations some of the noise of the
initial condition remains in the spatial direction. Also, the structure of the discontinuous-
in-time solution becomes more apparent, as the preconditioners do not enforce continuity
explicitly. After 100 iterations the noise in the spatial direction is completely eliminated.
On the other hand, the error at the time discontinuities remains relatively large. This large
error represents a “smooth mode” that can be removed using a coarse grid correction in
multigrid methods.

M. Hajghassem, E. C. Cyr, and D. Ridzal 89

Fig. 4.4: The state component of the error (left) and the adjoint component of the error
(right) for the Jacobi preconditioner at different iterations. Note the difference in scales
between the top six images and the bottom two images.

90 A Time-Parallel Method for PDE-Constrained Optimization

Fig. 4.5: The state component of the error (left) and the adjoint component of the error
(right) for the forward Gauss-Seidel preconditioner at different iterations. Note the difference
in scales between the top six images and the bottom two images.

M. Hajghassem, E. C. Cyr, and D. Ridzal 91

Fig. 4.6: The state component of the error (left) and the adjoint component of the er-
ror (right) for the backward Gauss-Seidel preconditioner at different iterations. Note the
difference in scales between the top six images and the bottom two images.

92 A Time-Parallel Method for PDE-Constrained Optimization

5. Conclusions and future work. We studied a time-parallel approach to solving
quadratic optimization problems with linear time-dependent PDE constraints. Our ap-
proach is based on time-domain decomposition, block tridiagonalization and the subsequent
use of fixed-point iterations with matrix splittings. We demonstrated the potential effective-
ness of the Jacobi scheme as a time-parallel preconditioner for linear systems arising in inex-
act SQP methods. We also showed that the Jacobi and Gauss-Seidel schemes may be good
smoothers for multigrid in time methods, which we will study next. We will also integrate
the proposed schemes into inexact matrix-free SQP methods for nonlinear optimization, and
tackle optimization problems with nonlinear time-dependent PDE constraints.

REFERENCES

[1] J. Albersmeyer and M. Diehl, The lifted Newton method and its application in optimization, SIAM
J. Optim., 20 (2010), pp. 1655–1684.

[2] W. L. Briggs, S. F. McCormick, et al., A multigrid tutorial, SIAM, 2000.
[3] A. Comas, Time-domain decomposition preconditioners for the solution of discretized parabolic optimal

control problems, ProQuest LLC, Ann Arbor, MI, 2006. Thesis (Ph.D.)–Rice University.
[4] M. J. Gander, 50 years of time parallel time integration, in Multiple Shooting and Time Domain

Decomposition, Springer, 2015. In press.
[5] M. Heinkenschloss, A time-domain decomposition iterative method for the solution of distributed

linear quadratic optimal control problems, J. Comput. Appl. Math., 173 (2005), pp. 169–198.
[6] M. Heinkenschloss and D. Ridzal, A matrix-free trust-region SQP method for equality constrained

optimization, SIAM J. Optim., 24 (2014), pp. 1507–1541.
[7] D. Ridzal, M. Aguiló, and M. Heinkenschloss, Numerical study of a matrix-free trust-region SQP

method for equality constrained optimization, Tech. Rep. SAND2011-9346, Sandia National Labo-
ratories, 2011.

[8] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

CCR Summer Proceedings 2015 93

EXPLOITING DOMAIN KNOWLEDGE TO OPTIMIZE MULTI-SCALE
PERIDYNAMICS COMPUTATIONS

MUHAMMAD HASAN JAMAL∗ AND DANIEL Z. TURNER†

Abstract. The development of multi-scale computational methods is rapidly increasing which enable
complex problems to be solved at multiple spatial and temporal scales. These problems are usually solved by
decomposing a large problem domain into multiple sub-domains that are solved independently at different
timescales and granularity and then coupled back to get the desired solution. However, a particular problem
can be solved in numerous ways by coupling the sub-problems together in different orders. Our previous
work [10] showed that the search space and performance variance of possible coupling orders is large,
and finding the best order to solve a problem is non-trivial. We presented a system that uses recursive
decomposition to generate efficient coupling schedules automatically by exploiting domain semantics and
domain-specific cost models for local multi-scale computational mechanics methods. The goal of this paper is
to validate that our scheduling approach can be applied to any multi-scale problem domain by just replacing
the domain-specific cost model for that domain. In this paper, we apply our scheduling approach on non-local
multi-scale computational peridynamics method. We show that our cost model is highly correlated with
actual application runtime. The coupling schedule generated by our approach, when executed sequentially
or in parallel using the parallel run-time system (Cilk) [3], outperforms alternate scheduling strategies, as
well as over 99% of randomly-generated coupling schedules sampled from the space of possible solutions.

1. Introduction. Multi-scale methods have seen significant development in recent
years for problems in science and engineering [4, 5, 11]. These methods allow problems
domains to be decomposed into smaller parts and simulated with vastly different spatial
and temporal scales in the different parts. This allows fine grain simulation for areas of
interest, at higher computational cost, while the remaining parts of the problem can be ap-
proximated with a much coarser model. Multi-scale methods thus avoid incurring the cost of
such fine-grained simulation throughout the problem domain while still assuring necessary
level of resolution for simulation.

Figure 1.1 shows an example of a crack growth and propagation. Such systems can be
solved at multiple scales where the area around the crack that needs to be investigated at a
finer granularity is run at a smaller timescale while the rest of the system is run at a larger
timescale.

Fig. 1.1: Beam Mesh with a Notch

Recursive domain decomposition [1, 2, 6, 8, 13, 18] is an attractive approach for multi-
scale simulation where a large problem is decomposed into a group of loosely-coupled sub-
domains. These sub-domains are solved independently, except at shared interfaces that
connect them. To ensure consistency of solution at these interfaces, the solutions of each
individual sub-domain are required to be coupled at these shared interfaces. It is computa-

∗School for Electical and Computer Engineering, Purdue University, jamal0@purdue.edu
†Sandia National Laboratories, dzturne@sandia.gov

94 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

tionally advantageous to decompose a large system instead of solving it as a single entity as
long as the size of interfaces are relatively small compared to the size of the sub-domains.

Figure 1.2 shows an example of this approach that results in a tree-like solution algo-
rithm. A square problem domain with a crack is decomposed into four sub-domains such
that the sub-domains adjoining the crack are simulated at a smaller timescale than the
other two, as the area around the crack is “the area of interest”. For each larger ∆T in the
system, the sub-domains at smaller ∆t are solved m times, where m is the integer ratio
between ∆T and ∆t. After solving for each sub-domain, individual sub-domain solutions
are then coupled together, in a recursive manner, to obtain the final solution. Once the
interface between two sub-domains is solved at each step, these sub-domains are considered
as a single large sub-domain in the next step and is represented by an interior node in the
tree. After the final coupling operation at the root node, the final solution is obtained.

Fig. 1.2: Recursive domain decomposition and coupling for multi-scale problems

As we show in [10], the critical point about this hierarchical approach to solving multi-
scale problems is that the structure and topology of the coupling tree has a significant effect
on the performance of the algorithm. Because the coupling operation is both commutative
and associative, a vast number of unique coupling trees are possible (945 for a problem
with just 6 sub-domains), making it highly unlikely for all but the simplest problems that
a domain scientist will adopt an effective coupling order. Furthermore, because the various
relevant parameters associated with computational costs are problem-dependent, finding
the optimal coupling tree becomes even more difficult, as no single approach for finding an
optimal tree coupling order may work for all different problems.

To tackle this problem, in our previous work [10], we developed a run-time optimization
system based on the inspector-executor approach that first inspect the original program to
infer the high level computational structure of the problem and then uses semantic properties

M.J. Jamal and D.Z. Turner 95

of the coupling operation, as well as a domain-specific cost model to obtain cost values that
reflect the coupling of multi-scale sub-domains. Next an optimal coupling order is generated
based on those cost values. Finally, the optimized schedule is run using the Cilk framework
to exploit available parallelism.

In this paper, from a peridynamics model, we infer problem semantics and use a domain-
specific cost model along with our scheduler from our previous work to optimize a non-local
bond-based computational peridynamics method.

Finally, we discuss that with our overall generalized approach, how computational al-
gorithms and domain applications from other domains can also be optimized using similar
semantics-exploiting approaches without much effort from domain scientists in optimizing
their code.

2. Background.

2.1. Peridynamics. Peridynamics is a non-local solid mechanics theory that permits
the formation of discontinuities in the displacement field, such as cracks and fractures. In
contrast to the classical local theory and also most other non-local approaches, the peridy-
namic equation of motion is free of any spatial derivatives of displacement. It replaces the
partial differential equations (PDEs) of classical continuum theories with integro-differential
equations (IDEs). A material point x in a body interact directly with other material points
within a distance δ called the horizon. The material within a distance δ of x is called the
family of x, Hx. In 3D the horizon will be a sphere. Figure 2.1 provides an overview of a
material point and its interactions. The interaction between material point x and any ma-
terial point q in its family is called a bond which is a pairwise force density vector f(q,x,t)
that is applied both material point. This pairwise bond force vector is jointly determined
by the collective deformation of Hx and Hq. These bond forces are anti-symmetric, i.e.
f(q,x,t) = -f(q,x,t). Figure 2.2 shows two material points in an undeformed and deformed
states. y is the deformation. The concept of a bond that extends over a finite distance is
a fundamental difference between the peridynamic model and classical models for materials
which are based on the idea of contact forces, i.e., interactions between material points that
are in direct contact with each other.

Fig. 2.1: An overview of an interaction of a material point in peridynamics

Boby forces are applied over a volumetric region. These forces can be constant or time-
variant, and are representative of the body forces on the material. Damage is calculated by
comparing the current stretch, given by the ratio of the relative deformation between two
nodes to their undeformed relative position, to some critical stretch S0 . The stretch must
be checked for every bond formed with every pair of material points. If any bond stretches
beyond the critical limit, that bond is broken and its force contribution is negligible in future
calculations.

96 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

Fig. 2.2: Deformation in peridynamics

To solve the peridynamics IDEs system, the system is spatially discretized into volume
sections, where each section is represented by a node in a peridynamic grid. The discretiza-
tion process is explained in [19]. This system is then temporally discretized and solved by
finite-difference schemes by approximating the time derivatives using difference formulas.
This allows one to solve for the state un+1 ≈ u(tn+1) of the system at some time tn+1 from
a known state un ≈ u(tn) by advancing through a small timestep ∆t where tn+1 = tn+ ∆t.
This process can be repeated successively to advance the solution in time [12]. However,
depending on the problem, the size of the this system of equations can be very large making
its solution as a single complete system very computationally intensive. One way to avoid
solving this system as a whole is by using domain decomposition. This approach divides
the problem into smaller sub-domains, solves them independently (possibly in parallel),
and couples them back by enforcing continuity constraints on the interfaces between the
sub-domains.

2.2. Solving a Recursively Decomposed Domain. Given a peridynamic grid of
nodes, partitioned into |S| sub-domains where S = {A,B, ...}, a hierarchy of sub-domains
can be built by combining two sub-domains at a time until the original undecomposed grid is
recreated as shown in the tree structure, in Figure 1.2. The original undecomposed structure
Ω is represented by the root node and the leaf nodes represent sub-domains that are not
further subdivided.

In general, the problem of solving any node Ω(A,B) in the tree, is substituted with two
coupled sub-problems for ΩA and ΩB . The entire system can be solved in a decomposed
manner, using the following sequence of operations at each timestep:

1. Solve the smaller uncoupled sub-domain problems for S = A,B.
2. Solve for the interface variable λ.
3. Update the individual solutions for ΩA and ΩB .

We refer to the above solution procedure as TreeSolve(Ω(A,B)). Calling TreeSolve(Ω) at the
root node and recursively solving the entire tree advances the state of the original problem
from un to un+1.

It has been shown that the recursive domain decomposition method allows for any
decomposition of a given mesh into sub-domains and also allows the sub-domains to be
coupled back in any order to yield the original problem domain. This fact results in a
very large number of possible tree representations of the coupled solution procedure for a
given set of sub-domains. For instance a problem decomposed into two sub-domains can be
coupled in only one way resulting in a unique tree. However, 3 sub-domains can be coupled
in 3 different ways and correspond to 3 distinct trees, 4 sub-domains result in 15 distinct

M.J. Jamal and D.Z. Turner 97

trees, 8 sub-domains yield 135,135 trees, 16 sub-domains have about 6.19× 1015 trees, and
so on. As we increase the number of sub-domains, the number of possible trees becomes
enormously large. Picking a particular tree that results in good performance out of this
huge space of possible trees is not trivial.

2.3. Multiple Time Scales. In section 2.2 we discussed a method that utilizes a
single timescale for discretizing all the different sub-domains in a tree. Usually in large sys-
tems, the area of special interest is small (e.g. crack in a beam) which needs to be simulated
at a finer granularity for numerical stability and accuracy, compared to the rest of the sys-
tem. Solving these types of problems using a single, very small, timescale (that is governed
by the fastest dynamics around the crack) is impractical and computationally unnecessary
since we only want high fidelity in some parts of the problem domain. To overcome this
problem, such problems are solved at multiple timescales, smaller (finer) timescales for the
sub-domains in and around the area of interest and larger (coarser) timescales for rest of
the sub-domains.

The approach described in section 2.2 is most beneficial when different sub-domains are
solved at different timescales and can be modified to account for such cases. In step (1) of
the TreeSolve procedure, if the daughter nodes ΩA and ΩB are assigned different timescales
∆tA and ∆tB with an integer timescale ratio m = ∆tA/∆tB between them, then sub-domain
ΩB is simply solved m times for every time that sub-domain ΩA is solved. As an example,
consider the same beam problem in Figure 1.2 with a timescale ratio of m = 2. To study
the notch at a finer granularity, sub-domains Ω1 and Ω2 will be simulated at smaller (finer)
timescale ∆t while the remaining two sub-domains will be simulated at a larger (coarser)
timescale ∆T . Thus, sub-domains Ω1 and Ω2 are solved twice for each solve of sub-domains
Ω3 and Ω4. Coupling between the timescales in step (2) of the TreeSolve procedure, is done
only once, at the larger timescale ∆tA. Finally the update in step (3) requires that the
solutions for sub-domains ΩA and ΩB be updated in the same ratio as their timescales. The
multi-timescale method is valid for any number of timescales in the problem, however, in
this study we are focused on the most common scenario i.e. two different timescales. Finer
details of the multi-timestepping method can be obtained from the references [16, 17].

2.3.1. Constraints. Due to the additional complexity of handling multiple time-
scales, there is one constraint that multi-timescale method imposes on the choice of timescales.
In any tree, all child nodes are always supposed to be at a smaller (finer) timescale or the
same timescale as their parent node. In addition all sub-domains at the same timescale
value must be coupled prior to coupling with sub-domains with a different timescale.

Figure 1.2 shows a generic way of solving local and non-local models using domain
decomposition. For peridynamics, additional restrictions are applied. To solve multiple
sub-domains at different timesteps, there must be a volumetric interface region where the
nodes of the sub-domains overlap of width at least equal to the horizon δ, similar to applied
forces and boundary conditions. Figure 2.3 shows an initially cracked plate with loads
applied at both ends. The area of interest is the crack so ΩB will be run at a smaller
timestep while ΩA is simulated at a larger timestep. The interface between ΩA and ΩB
is a volumetric region ΩI where the nodes are shared between ΩA and ΩB . Once both
sub-domains ΩA and ΩB are solved, the solution on ΩA and ΩB is coupled using Lagrange
multipliers [14, 15].

For expediency, we use 1-D decomposition of the problem, hence a volumetric interface
region cannot be shared by more than two sub-domains. For more information on the theory
and mathematics behind multi-timesteping applied to peridynamics, see [9].

98 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

Fig. 2.3: A two sub-domain plate with an initial crack, loaded in tension

3. Cost Model and Tree Building Heuristics. In our previous work [10], we de-
scribed the properties of our coupling trees, which lays the foundation for creating valid tree
orderings. The coupling operations are both associative and commutative. Hence given a
coupling tree, we can create new trees by tree rotation and swap operations. We showed
that the number of distinct valid trees is exponentially large and that it is not an easy task
to find an optimal ordering. To obtain a good solution, we introduced a cost model which
correlates with the computational time taken to complete the TreeSolve routine. We used
heuristics to find an optimal tree coupling order that minimizes computational cost, thus
reducing execution time and gaining performance.

In this multi-scale peridynamics work, we use the same tree building heuristics as the
properties of coupling operations (associativity and commutativity) in local methods and
non-local methods will be same. For peridynamics, cost model will change as the compu-
tations are based on cells and bonds between cells as compared to nodes and elements of
meshes in the local methods. This section discusses the cost model that produces a low cost
coupling schedule automatically.

3.1. Computational Cost Modeling. As described in section 2.2, the three main
operations needed to solve a given decomposed mesh are (i) uncoupled sub-domain solve,
(ii) interface solve for coupling, and (iii) update. We adopt a simple cost model to quantify
the cost of these operations. This is done by analyzing the input problem to determine its
properties, namely the interface size (m) and sub-domain sizes (n). The interface size is the
number of equations that need to be solved for the nodes shared between two sub-domains.
The sub-domain size is the number of equations needed to be solved in an individual sub-
domain. The nodes at the shared interface are also considered for individual sub-domains.
With this information, we can approximate the matrix sizes for all operations to estimate
the time it will take to run during actual execution, without actually running execution step.
For expediency, we consider only a dense direct linear solver for our cost model, although
our linear systems are not dense. It is hard to come up with a cost model for sparse solvers.
The cost of sub-domain solves is of order n3, the coupling cost is of order m3, and the cost
of updating the sub-domain solutions is n2

1m + n2
2m. For multi-timescale problems, we

simply multiply the cost of each operation by the number of times it is executed within a
single timestep.

In our results, we show that the cost values correlate well with actual runtimes, enabling
us to use heuristics based on the models to create effective coupling trees.

Figure 3.1 shows CDF of tree cost for 500 randomly generated trees, for a given cuboid
problem decomposed into 16 sub-domains. It is observed that by picking only 500 randomly
coupled trees out of the whole tree space (< 1% of the space), the costs varies. Our work
presents a way to find a configuration that obtains a near-optimal runtime among the space
of coupling trees.

One point to note here is that the variation in the costs in not as significant as our
previous work using local methods [10]. That is because we use 1-D decomposition for input

M.J. Jamal and D.Z. Turner 99

problem. The cuboid problem we used here, is decomposed in equal sized sub-domains and
the interfaces are of similar size. With these limitations different coupling orders will have
similar costs. We believe that with peridynamics methods that can handle interfaces shared
between more than two sudomains, we will see significant performance variation across trees.

Fig. 3.1: CDF of 500 Random Trees based on tree costs

3.2. Tree Building Heuristics. With a large space of existing possible trees for a
given problem, the probability of a domain scientist choosing a low cost tree is small. A
simple way would be to couple sub-domains based simply on the partition labeling of the
sub-domains (i.e., the order in which partitioners such as METIS [7] produce the partitions).
We call this the Default approach, and it represents the baseline coupling order for a problem.

Given a cost model that computes costs on a per-subtree basis, an intuitive approach
would be to develop a greedy algorithm that builds the coupling tree from the bottom up.
We discuss its limitation in [10].

Instead, we adopt a top down approach, focusing on minimizing the coupling costs at
higher levels of the tree. Beyond this, we would also like to maintain the balance of the tree,
with both left and right subtrees for any node having roughly equal solution times; this will
improve the potential parallelism of the resulting tree.

In order to facilitate tree building, the decomposed system can be abstracted as an
undirected graph, as shown in Figure 3.2. In the graph, each node represents an individual
sub-domain, and edges represent shared interfaces between them. In essence, the graph
represents the topology of the sub-domains. The weights on graph nodes and edges represent
the cost of their sub-domain solves and coupling operations respectively. Figure 3.2 is just a
general abstraction. Using 1-D decomposition for input problems, the graph will be in the
form of a linked list as only two sub-domains can share interface between them.

One approach to building a tree top-down given this abstraction is to simply perform
recursive bisection of graph where each partition represents the sub-domains that will be
in the left and right subtrees of the root. In the multi-time-scale case, we produce multiple
graphs, one for each timestep in the problem (as sub-domains at each time step must be
coupled together before moving on to larger time steps).

Note that even performing this top-down bisection relies on domain knowledge: because
this tree-building approach can produce arbitrary results, it is only legal because we know

100 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

Fig. 3.2: Graph representing a 4 sub-domain system

the domain semantics allow for any coupling order. Nevertheless, despite leveraging domain
semantics to build the tree, this approach does not consider that leaf solve and coupling
costs are based on properties of the operations such as the number of equations and interface
sizes. This bisection technique is what an application programmer might think as optimal
for decomposing meshes in a top-down fashion. However, this method (labeled cost-agnostic
in our experiments) does not take into account domain specific cost information.

We use domain-specific heuristic from [10], which is a scheduling procedure that not only
integrates domain-specific semantic information, but also domain-specific cost information.
We use domain knowledge obtained from our cost model and apply the coupling and sub-
domain costs to the edge and node weights, specified in section 3.1, in our graph prior to
partitioning. For information on why a domain-specific heuristic works better than cost-
agnostic heuristic, see [10].

4. Evaluation. In this section, we validate our cost model against actual runtime
performance and evaluate the performance of the cost-agnostic and domain-specific heuristics
running both sequential and parallel TreeSolve algorithms. For our parallel implementation,
we use Cilk [3] to obtain optimal parallel performance. We focus on the results of two
physical testing systems: 1) a 16 sub-domain cuboid with 1500 cell (5 x 5 x 60) and 2) a 16
sub-domain cylindrical pipe with 15300 cells. Each system was partitioned by hand. These
systems are simulated using the extended version of the multi-scale peridynamics solver [9]
running on an Intel Xeon E5-4650 system configured with four 8-core processors (total of
32 cores) running at 2.7 GHz. Each input contains two timescales, with one fourth of the
sub-domains assigned to run at a smaller timestep and the rest of the system at a larger
timestep, with a timestep ratio of 2. The timestep values are arbitrarily chosen but within
accuracy and numerical stability range. Figure 4.1 shows the two input systems.

4.1. Cost model validation. To validate our cost model, a set of 500 randomly
generated coupling trees was used to represent a sample of the entire space of coupling
trees. These trees are created by starting with all sub-domains in separate sub-trees and
randomly selecting two sub-trees to be coupled together until the full tree is obtained. Note
that this random coupling means that occasionally two sub-domains that do not share an
interface will be coupled. This schedule is mathematically and semantically correct: the
final solution will be computed correctly. Nevertheless, such coupling orders are nonsensical
from a performance perspective, as there is no benefit in reduced work to be gained from
coupling sub-domains that are not adjoining.

The cuboid input shown in Figure 4.1(a) with 16 sub-domains was used to explore the
space of trees. Figure 4.2 illustrates the correlation of our cost model with the actual run-
times for solving the 16 sub-domain problem on single and multiple threads. For various
number of cores, actual runtimes are plotted against the projected cost of the correspond-
ing trees. The results show that the correlation between the projected cost and expected

M.J. Jamal and D.Z. Turner 101

(a) Cuboid Input

(b) Cylinder Input

Fig. 4.1: Visualization of Input Systems

runtime has an average correlation coefficient of 0.70–0.85 for single and multiple threads.
We estimate the parallel costs using the same sequential model. We justify that the parallel
runtime correlates with total work during parallel execution. Although we see that corre-
lation does decrease for higher number of threads, our cost model does strongly reflect the
execution time of the TreeSolve code. For the remaining test inputs, the cost model shows
similar results with high correlation.

4.2. Performance comparisons. We next compare the execution times for running
our heuristics on our two testing inputs. Given a partitioned input, our heuristics generate
new coupling orders to solve each problem, subject to multiple timescales. In addition to our
domain-specific heuristic DS, we evaluate the cost-agnostic tree CA and the Default DT, which
is based on the initial partition labeling (e.g. sub-domain 1 is coupled with 2, 3 with 4 and
so on). As described in Section 3.2, DT serves as a baseline. CA uses a top-down approach
to produce a new tree, but does not incorporate the domain-specific cost models, while our
DS heuristic refines the top-down approach by incorporating knowledge of leaf solve and
coupling costs. For each input, we evaluate all three schedules. Figure 4.3 shows a CDF of
the runtimes for running the 16 sub-domain cuboid input for various numbers of threads.
We compare the execution times of DS, CA, and DT, along with the 500 randomly generated
trees for single and multiple threads. Here we observe that DS outperforms all the trees
that we tested and we achieved a significant speedup over randomly selected trees in the
configuration space. In other words, despite the vast configuration space, by incorporating
domain-specific semantics and cost knowledge, we are able to infer a very effective coupling
order. We also note that the other evaluated schedules, DT and CA perform worse than our
domain-specific schedule. We see that the default schedule is quite slow, while CA yields
better results. Nevertheless, our DS approach outperforms the CA schedule by 2 to 7%.

Observations. The test input files used for this study were partitioned in one direction
such that the size of all sub-domains is equal and the size of each interface between two node
is approximately equal. Usually, when an input problem is decomposed with partitioners,
the labeling of sub-domains might not be straight forward. To mimic this behavior, we

102 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

(a) 1 Core (b) 2 Cores

(c) 4 Cores. (d) 8 Cores.

Fig. 4.2: Cuboid: Cost vs Runtime Correlation of 500 Random Trees

Fig. 4.3: Cuboid: CDF of Runtimes for 500 Random Trees with Heuristics

randomly assigned ID labels to sub-domains. The reason for poor performance of DT is this
random labeling since DT is dependent on sub-domain labeling. We also tested the inputs
by labeling then in a sequence (e.g. 1, 2, 3 ...) which is not shown in the results. This
sequence labeling with DT produced exactly the same results as DS. That is understandable
since the input files were nicely partitioned into equal sized sub-domains with equal sized

M.J. Jamal and D.Z. Turner 103

interfaces. DT being dependent on the order of labeling will give varied results with different
labeling sequences. Our DS is independent of labeling and will generate optimized results.
In the worst case, where DT can figure out the optimized schedule, DS will perform as good
as, if not better than DT.

(a) 16 Sub-domain Cuboid Input (b) 16 Sub-domain Cylinder Input

Fig. 4.4: Execution times across different number of threads

4.3. Parallel performance. Figure 4.4 compares the execution times for each heuris-
tic across different number of threads for the cuboid and cylinder inputs. We note that in all
cases, the DS approach delivers better performance than the CA and DT. While the specific
amount of improvement when using our DS heuristic is problem-dependent, we see that
incorporating domain knowledge provides a consistent edge across multiple inputs. Table
4.1 shows the speedup of CA and DS over the baseline, DT, for each of the inputs at both
one and eight threads. Not only does the DS schedule perform the best in single-threaded
execution, the advantage increases at higher thread counts; DS provides better scalability.
DS only slightly performs better than CA because of the nature of the input problem. We
believe that DS will perform significantly better than CA for input problems with unequal
sub-domain and interface sizes. DS will show significant performance improvement on peri-
dynamics methods that allow more than two sub-domains to share a single interface. For all

Table 4.1: Speedups of CA and DS schedules over baseline DT

No. Thread = 1 No. Thread = 8
CA DS CA DS

Cuboid 1.08 1.12 1.07 1.13

Cylinder 1.12 1.13 1.27 1.31

of the schedules, performance scales up to 4 threads and speedup is obtained when increas-
ing the number of threads. For 8 threads and beyond, the results do not scale well. Using
the Cilk profiling tool, we found that for each input, past 4 cores, the runtime of critical
path equals the runtime of the solver. This indicates that the parallelism saturates at 8
threads and not much more parallelism can be exploited. Increasing communication costs
and parallel overhead plays a role here. This lack of scalability is understandable because
the structure of the input is inherently imbalanced (4 sub-domains at smaller timestep vs.
12 sub-domains at larger timestep). In other words, there is a certain amount of inevitable,

104 Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations

application-specific load imbalance, especially when there are only a few sub-domains run
at small time scales. Additionally, the tree-based nature of the algorithm and the fact that
coupling occurs atomically limit available parallelism.

Available parallelism and scalability across heuristics. A natural question, given the in-
herent lack of scalability, is whether our scheduling heuristics negatively impact the available
parallelism of the program. To investigate this question, we used Cilk to profile the total
work, critical path length (span), and amount of parallelism (work/span) afforded by each
schedule across all of the inputs. Table 4.2 summarizes these results.

There are two key take-aways from these results. First, as expected, the DS scheduling
heuristic, which incorporates domain-specific semantic and cost information, yields the best
single-threaded performance (work). This is consistent with the raw performance numbers
shown above. Second, despite the heuristics focusing on work minimization, with parallelism
only of secondary importance, parallelism is not adversely affected. In fact, on both inputs
DS exhibits the same amount of parallelism as CA.

Table 4.2: Inherent parallelism in coupling schedules

Input Schedule Work Critical Path Parallelism
(sec) (sec)

Cuboid
DT 12.74 8.12 1.57
CA 11.76 6.57 1.79
DS 11.35 6.40 1.77

Cylinder
DT 1468.51 789.82 1.86
CA 1307.09 619.57 2.11
DS 1297.73 613.92 2.11

5. Conclusions. This paper utilizes the effective scheduling algorithm from previous
work [10] to optimize multi-scale computational peridynamics codes based on recursive do-
main decomposition. Solving a decomposed problem is represented as solving a binary tree,
and the structure of the tree dictates the performance of the solver. We demonstrate for
real problems that our scheduling algorithm chooses an optimized tree coupling from an ex-
ponentially large search space automatically, where there is a large variation in performance
between each tree in the search space. Our scheduling algorithm consistently produce trees
that rank in the 99th percentile of possible trees for problems. Finally, we show that exe-
cution of the trees from our scheduling algorithm deliver scalable performance on multiple
cores as long as there is parallelism to be exploited, providing solutions in less time than
randomly selected coupling trees.

Our work in this paper and previous work [10] automatically provides optimized, paral-
lel implementations of multi-scale computational methods. We validate that our scheduling
approach can be applied to any multi-scale problem domain by just replacing the domain-
specific cost model for that domain, allowing domain scientists to take advantage of novel
computational techniques without devoting substantial time to the tedious process of opti-
mizing a parallel implementation on a problem-by-problem basis.

REFERENCES

[1] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro, A comparison of eigensolvers for
large-scale 3D modal analysis using AMG-preconditioned iterative methods, International Journal
for Numerical Methods in Engineering, 64 (2005), pp. 204–236.

M.J. Jamal and D.Z. Turner 105

[2] J. K. Bennighof and R. B. Lehoucq, An automated multilevel substructuring method for eigenspace
computation in linear elastodynamics, SIAM Journal on Scientific Computing, 25 (2004), pp. 2084–
2106.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, Cilk:
An efficient multithreaded runtime system, in Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP ’95, 1995, pp. 207–216.

[4] J. Fish, Bridging the scales in nano engineering and science, Journal of Nanoparticle Research, 8
(2006), pp. 577–594.

[5] V. Gravemeier, S. Lenz, and W. A. Wall, Towards a taxonomy for multiscale methods in com-
putational mechanics: Building blocks of existing methods, Computational Mechanics, 41 (2008),
pp. 279–291.

[6] W. Hackbush, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators
by means of a multigrid method, SIAM Journal on Numerical Analysis, 16 (1979), pp. 201–215.

[7] G. Karypis and V. Kumar, Metis - unstructured graph partitioning and sparse matrix ordering
system, version 2.0, tech. rep., Department of Computer Science, University of Minnesota, 1995.

[8] Z. Li, Y. Saad, and M. Sosonkina, pARMS: a parallel version of the algebraic recursive multilevel
solver, Numerical Linear Algebra with Applications, 10 (2003), pp. 485–509.

[9] P. Lindsay and M. Parks, A Multi-timestepping Extenstion to the Peridynamics Theory, in 2013
CSRI Summer Proceedings, Sandia National Labs, 2013.

[10] C. Liu, M. H. Jamal, M. Kulkarni, A. Prakash, and V. Pai, Exploiting domain knowledge to
optimize parallel computational mechanics codes, in Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, ICS ’13, New York, NY, USA, 2013,
ACM, pp. 25–36.

[11] J. Michopoulos, C. Farhat, and J. Fish, Modeling and simulation of multiphysics systems, Journal
of Computing and Information Science in Engineering, 5 (2005), p. 198.

[12] N. M. Newmark, A method of computation for structural dynamics, Journal of Engineering Mechanics,
ASCE, 85 (1959), pp. 67–94.

[13] C. Papalukopoulos and S. Natsiavas, Dynamics of large scale mechanical models using multilevel
substructuring, Journal of Computational and Nonlinear Dynamics, ASME, 2 (2007), pp. 40–51.
Transactions of the ASME.

[14] A. Prakash, Multi-time-step domain decomposition and coupling methods for non-linear structural
dynamics, tech. rep., 2007.

[15] A. Prakash and K. D. Hjelmstad, A FETI based multi-time-step coupling method for Newmark
schemes in structural dynamics, International Journal for Numerical Methods in Engineering, 61
(2004), pp. 2183–2204.

[16] , A multi-time-step coupling method for Newmark schemes in structural dynamics, in proceed-
ings of McMat2005: Joint ASME/ASCE/SES Conference on Mechanics and Materials, June 2005.

[17] A. Prakash, E. Taciroglu, and K. D. Hjelmstad, Computationally efficient multi-time-step method
for partitioned time integration of highly nonlinear structural dynamics, Computers & Structures,
133 (2014), pp. 51–63.

[18] Y. Saad and J. Zhang, BILUTM: A domain-based multilevel block ILUT preconditioner for general
sparse matrices, SIAM Journal on Matrix Analysis and Applications, 21 (1999), pp. 279–299.

[19] S. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics,
Computers & Structures, 83 (2005), pp. 1526 – 1535.

CCR Summer Proceedings 2015 106

IMPROVING THE TRACER CORRELATION PROBLEM IN A
SPECTRAL ELEMENT DYNAMICAL CORE

NICOLAS A. LOPEZ∗ AND MARK A. TAYLOR†

Abstract. The existence of a lack of linear correlation (LC) preservation is confirmed and improved in
the tracer transport scheme of the spectral element core used by the Community Atmosphere Model (CAM).
Application of a certain simple tracer chemistry reaction before each model time step can test whether the
scheme actually preserves linear tracer correlations to machine precision. Using this method, we confirm
previous results that, at times, the shape-preserving filters used in the transport scheme do not preserve
LCs. However, it was found that the initial conditions do not preserve LCs to quite machine precision, and
there is other evidence that the limiter is facilitating the accumulation of this roundoff error. In any case,
limiter subroutine is modified so that the correlation does not break significantly for a 12 day simulation.
This process is done outside of CAM, and instead, directly within a shallow water model that uses the
HOMME dynamical core.

1. Introduction. In addition to mass conservation, tracer transport schemes often
attempt to preserve physical bounds or monotonicity. However, the transport scheme is
also meant to satisfy a few other properties regarding pairs of tracers [4]. This includes
the ability to maintain linear tracer correlations (LCs) to within machine precision for the
length of any simulation, when given a pair of related tracers. The method known as “toy
chemistry” testing put forth by [3] attempts to look at how well the spectral element core of
the Community Atmosphere Model (CAM-SE) handles chemistry interactions at the sub-
grid level. By implementing a simple chemistry reaction at every time step of the model,
the toy chemistry tests the scheme’s ability to preserve mixing ratio correlation between
the two tracers at every node and time-step. If a scheme fails to do this, the scheme’s
implementation should be re-examined.

To ensure realistic problem solutions, monotinicity can be enforced in CAM-SE by lim-
iting the amount of fluctuation between the nodes of adjacent elements. The optimization-
based limiter described in [1] (here known as the Equal Value or EV limiter) attempts to
reduce unphysical fluctuations while minimizing the discrete L2 error norm. In addition to
conserving mass, this particular limiter was thought to have the advantage of preserving
LCs. However, [3] used the toy chemistry test to show that the limiter does not always
preserve LCs in its present implementation. This prompted the re-investigation into the
limiter code and launched the attempt to fix the issue.

2. HOMME Model and Transport Scheme. The High Order Method Modeling
Environment (HOMME) is the spectral element dynamical core of the Community Atmo-
sphere Model (CAM) that uses the continuous Galerkin spectral element method [6] for un-
structured quadrilateral meshes. For advection, it looks similar to the finite-volume method
in that it conserves mass during transport and employs the same Lagrangian discretization
in the vertical. Second-order accurate Runge-Kutta methods are used for the time-stepping.
The HOMME shallow water model originally solves the continuity equation written as

∂(ρφ)
∂t

= −∇ · (vρφ) (2.1)

without chemistry or any external forcing. The continuity equation preserves mixing ratio
(φ) along the flow if density is calculated at each step [2]. For our experiments, it is important

∗Florida State University, nal10c@my.fsu.edu
†Sandia National Laboratories, mataylo@sandia.gov

N.A. Lopez and M.A. Taylor 107

that φ be preserved by the advection scheme, so that the linearly correlated chemistry is
the only localized effect along the path of the tracer.

At each time step, the toy chemistry forcing is applied directly to the weak formulation
nodes of each element before the full advection step. In HOMME, there is the option to
apply a limiter to the nodes after hyperviscosity and the local element time-step have been
applied. In our experiments, the application of this limiter (if it is indeed applied) is the
last significant change to the elements before output functions are called and the next time
step takes place. For our simulations, no physics (other than chemistry) are applied and
constant hyperviscocity is used. As for the simulations in our research, each run is done
using Gauss-Lobatto weights over 16 nodes on 20 elements. We chose a time step of 432
seconds to be run over a period of 12 days with a viscocity coefficient of 2.74× 1014. These
values allowed for realisitc chemistry forcing terms. Finally, the output are interpolated to
a 192×384 lat/lon grid.

3. Equal Value Limiter. The act of smoothing numerically-introduced oscillations
(such as those caused by CFL condition breaches) is often done with what is known as a
quasi-monotone limiter. This is done to provide a more realistic physical solution at the
cost of introducing a bit of error into the system. There are various options of monotinicity-
preserving limiters within HOMME, but [3] showed how the default limiter in CAM-SE
can fail the terminator test. This limiter takes in Gaussian weights as well as the weak
formulation values at the nodes (q) multiplied by density (ρq) and shrinks the range of q to
be within a given minimum/maximum. We can symbolize the limiting process in terms of a
function lim, where q̃ = lim(q, qmax, qmin). These qmin and qmax quantities can represent a
physical limit (non-zero) or a function of neighboring element’s min/max. However, simply
truncating the values to be within the range will violate mass conservation, unless the mass
change is re-distributed among the other nodes. This can be written as∫

ρq̃ =
∫
ρq (3.1)

This redistribution can be done many different ways. Minimizing the L2 error norm seems
an obvious criteria for the redistribution scheme, but it is also important to remember to
maintain correlation with a linearly related tracer. When combined with 3.1, we describe
the L2 optimization as

min
∫
elem

ρ(q̃ − q)2 (3.2)

or in discrete form using Gaussian weights wi ...

min
q̃∈R

np∑
i=1

wiρi(q̃i − qi)2

with the constraints

qmin ≤ q̃i ≤ qmax and
np∑
i=1

wiρiq̃i =
np∑
i=1

wiρiqi.

(3.3)

Here, np denotes the total number of nodes in the element, and qi is a node value on a single
tracer.

In the EV limiter, all out-of-bounds values are brought up/down to qmin or qmax. This
new set of truncated values is notated as q′i. The amount of mass change that this generates
is assigned as

108 Tracer Correlation Preservation

α =
∑

wi(qi − q′i) (3.4)

This is the amount of mass that must be redistributed across the nodes and can be neg-
ative just as easily as it can be positive. Solving the minimization problem (ignoring the
constraints) reveals that the update to node q′i can be written as

q̃i = q′i +
α∑
i wi

for every i s.t.

{
q′i 6= qmax if α > 0
q′i 6= qmin if α < 0

(3.5)

This process is repeated on intermediate result q̃i until the maximum number of iter-
ations occurs or the constraints are met (α = 0). It can be shown that no matter how
many iterations are performed, the amount of mass in the element does not change. More
important to our experiment, if a second set of tracer mixing ratio nodes qy is defined as a
linear operation on original tracer qx by the equation

qy = Aqx +B, (3.6)

then doing this same linear operation on q̃x should produce q̃y. This is defined as preserving
LCs with respect to mixing ratios. To prove that the EV limiter theoretically preserves this
correlation, we must first assume that the truncation step does too (i.e. q′y = Aq′x+B). This
is a reasonable in HOMME, because qmin and qmax come from interdependent neighboring
element nodes. From there, we can show the linear dependence of the two α masses:

αx =
∑

w(qx − q′x)

αy =
∑

w(qy − q′y)

=
∑

w((Aqx +B)− (Aq′x +B))

= A
∑

w(qx − q′x)

= A(αx)

(3.7)

We then use Equation 3.5 to define EV updated tracer nodes:

q̃x = q′x +
αx∑
w

q̃y = q′y +
A(αx)∑

w

(3.8)

Simply solving for q′x and q′y and using Equation 3.6 cancels the term with α:

q̃y −A(
αx∑
w

) = A(q̃x)−A(
αx∑
w

) +B

q̃y = A(q̃x) +B
(3.9)

We have shown that the EV limiter theoretically preserves LCs, but the results of the
terminator test in HOMME reveal that its implementation can fail at the terminator, where
there exists a sharp gradient of tracer values.

N.A. Lopez and M.A. Taylor 109

4. Toy Chemistry Implementation. In terms of real-world application, the toy
chemistry simulates the photolysis of Cl2 in the stratosphere when the sun begins to rise on
the horizon. This reaction experienced near the Earth’s solar terminator is simulated by

Cl2
k1−→ 2Cl

Cl + Cl k2−→ Cl2
(4.1)

Converting these reactions to kinetic equations and rearranging, we obtain

dCl

dt
= 2k1Cl2 − 2k2ClCl

dCl2
dt

= −k1Cl2 + k2ClCl
(4.2)

In these equations, the reaction rates k1 and k2 are global fields that do not change with
time. The equation for the k1 rate of Chlorine molecule decomposition is set to a physically
realistic field centered around (λc, θc) and shown in 4.1 according to the following equation:

k1(λ, θ) = max[0, sin θ sin θc + cos θ cos θc cos(λ− λc)] , (4.3)

Fig. 4.1: The reaction rate k1 that stays constant throughout all simulations. The thick white line
marks the solar terminator, where k1 drops to zero. The other reaction rate k2 = 1 for all locations
and times.

Additionally, the natural rate of chlorine molecule formation is simulated with a constant
k2 = 1 across the whole globe. If we were to initialize the mixing ratios to be Cl2 = 0 and
Cl = 4.0× 10−6 and then apply the chemistry shown in Equation 4.2, then it can be shown
that the steady-state solution fields would become

lim
t→∞

Cl(t) = D− r

lim
t→∞

Cl2(t) =
1
2

(Clz −D + r)

where

Clz = Cl + 2Cl2, r =
k1

4k2
, D =

√
r2 + 2rClz

(4.4)

110 Tracer Correlation Preservation

Fig. 4.2: Initial conditions for Cl and Cl2 tracers

These fields shown in Figure 4.2 will actually be our initial conditions for the toy-
chemistry simulation. The boundary between the gases initially lies at the solar terminator.
Although the tracer gases are advected across the terminator in the simulations, the ter-
minator is an artifact of the reaction constants, which do not change with time. If we
superimpose the plots in Figure 4.2, we can see that Cl + 2Cl2 = 4e−6 over the whole do-
main. Furthermore, our chemistry equations 4.1 indicate that the total number of Chlorine
atoms should be conserved throughout the duration of any simulation. That is ...

DClz
Dt

=
D

Dt
[Cl + 2Cl2] = 0 . (4.5)

Given this, we can expect Clz = 4e−6 to be preserved to machine precision over the course
of the simulation. The two different tracers Cl and Cl2 are assigned to 2 independent levels
of the HOMME shallow water model. At each time step, the tracer concentration values
associated with each element interact with one another, but only by means of chemsistry.
This interaction can be done by first calculating analytical forcing terms

FCl = −L∆t
(Cl −D + r)(Cl +D + r)

1 + E(∆t) + ∆tL∆t(Cl + r)

FCl2 = −1
2
FCl

where

L∆t =

{
1−e−4k2D∆t

D∆t if D > 0
4k2 if D = 0

(4.6)

These forcing terms are meant to be applied to ρq, instead of mixing ratio nodes q,
because this the variable being used by the advection scheme. The calculated density ρ is
the same for both tracers. To prove that the chemistry itself preserves LCs, we first define

N.A. Lopez and M.A. Taylor 111

tracer updates q̂Cl and q̂Cl2:

ρq̂Cl = ρqCl + FCl

ρq̂Cl2 = ρqCl2 − 1
2
FCl

(4.7)

Solving for qCl and qCl2 and then plugging into Equation 3.6 using A = − 1
2 and B = 2e−6,

we get

q̂Cl2 +
F

2ρ
= −1

2
q̂Cl +

F

2ρ
+ 2e−6

q̂Cl2 = Aq̂Cl +B

(4.8)

This shows that the chemistry update preserves a correlation. A little more algebra shows
that the initial tracer condition stated in Equation 4.4 does as well. Since the chemistry
preserves LCs, it is up to the scheme and the limiter to also preserve the LC. The forcing
terms can then be applied to the ρq values at each element node using the following coding
assignment:

rhoPhi cl = rhoPhi cl + FCl*dt
rhoPhi cl2 = rhoPhi cl2 + FCl2*dt

Once this chemistry has been applied to the two tracer levels in the model, the transport
scheme advancement is called, using a prescribed non-divergent flow.

5. Running Toy Chemistry in HOMME. There is a wide variety of prescribed
flows that could be used in the shallow water model to test how well the model preserves
linear tracer correlations, but for the purposes of replicating [3]’s results, the reversing
deformational flow used by [5] is used. This flow consists of two global gyres that shift
eastward with time and re-appear in the west with periodic boundary conditions. With
this flow, tracers will actually return to their initial positions at prescribed times after
a significant amount of perturbation. Of course this advantage of having the analytical
solution at the final time step only applies to a chemistry-free model, so we cannot calculate
error norms for the Cl and Cl2 tracer fields. Instead we know Equation 4.5, so comparing
our Clz field to a constant 4 × 10−6 field will be our error criteria. More specifically, [3]
defines L2(t) and L∞(t) error norms to be:

L2(t) =

√
I[(Clz(t)− Clz(0))2]

I[(Clz(0))2]

L∞(t) =
max∀λ,θ | Clz(t)− Clz(0) |

max∀λ,θ | Clz(0) |
where

I(φ) =
1

4π

2π∫
0

π/2∫
−π/2

φ(λ, θ, t)cosθdλdθ .

(5.1)

The ability to determine if the scheme fully preserves LCs can also be done qualitatively by
plotting the global Clz field. In fact this method is more useful, because the locations of the
lack of preservation can also be determined. This is important, because the solar terminator
is where most of the chemistry occurs.

112 Tracer Correlation Preservation

Fig. 5.1: Results of unlimited simulation at 0.5 and 4 days. A uniform Clz field indicates a truly
semilinear transport operator was used.

Fig. 5.2: Same figure as 5.1, but with the EV limiter applied. At 0.5 days the underlying Clz error
is very low, but by 4 days it has grown enough to be significant.

Again [3] claimed that the unlimited advection scheme preserved LCs to machine pre-
cision throughout the entire domain, and when the Equal Value limiter was applied, the
correlation broke by up to 25% near the terminator. However, we noticed that the no-
limiter LC was in fact not preserved to machine precision over the whole domain, even in
the initial condition. The Cl2-dominant region had a machine-precision relative error of
Clz to O(10−16), but the Cl-dominant region preserved only to O(10−12). This difference
aside, we came extremely close to replicating the no-limiter experiment, but had a feature
far removed from the terminator that around Day 10 began to disrupt the Clz L2 norm to
above O(10−10). Our EV limiter experiment did indeed break the Clz preservation much

N.A. Lopez and M.A. Taylor 113

more drastically, however. Much like [3]’s results, this Clz error occured mainly at the ter-
minator and then propogated around the domain as if it were a separate tracer. Figure 5.2
shows that the Equal Value limiter does fairly well through 12 hours, but by Day 4 large
errors take up a significant part of the domain. This is in comparison to Figure 5.1, where
no limiter is applied.

The authors of [3] suggest that the error at the terminator is generated when the limiter
must resolve a very sharp tracer gradient. To verify this, we take the numerical gradient√

∂Cl
∂x

2
+ ∂Cl

∂y

2
at t=12 hours at each gridpoint using a centered difference. Figure 5.3

shows that the Clz error does in fact occur at the locations of highest gradient, but the
limiter successfully makes the tracer transition smoother and more monotonic, despite its
error-producing properties in subsequent time steps.

Fig. 5.3: Numerical gradient of Cl a few time steps before the Clz relative error begins to reach
O(10−2) using the EV limiter. The smaller subplots are simply zoomed into the error-prone region
of the terminator.

Interestingly, if we increase the initial Clz value of 4e−6 by a few orders of magnitude,
we do not see the EV limiter significantly break the correlation. In fact, Figure 5.4 shows
that making this change generates a large jump in LC preservation. Another interesting
result shown in this figure is the “layering” of the error with respect to initial Clz values.
The reader is reminded that these are relative errors and by this property, should lie on
top of one another if they preserve close to machine precision. The fact that they do not is
direct evidence of the roundoff error inherent in the calculations used to generate the initial
conditions. Another indication of roundoff error is from the lack of exact preservation of
the Cl-dominant region of the initial condition mentioned previously. We will leave this
roundoff evidence aside for the time being, and instead discuss adjusting the limiter.

114 Tracer Correlation Preservation

Fig. 5.4: Results of running 12-day simulations with the EV limiter, using various other initial Clz
values.

6. Resolving the Correlation Problem. Before beginning to resolve the problem,
the code was adjusted and streamlined, but these changes did not improve the results. The
limiter implementation is relatively simple, but there are certain sub-parts that can be LC
preserving, even when the remainder of the limiter is not. For example, we show in Figure
6.1 that when we take the first step of the limiter and only truncate the values within
each element without redistributing the mass, the LC between tracers is preserved. It is
important to distinguish conserving local mass from preserving linear correlations. The fact
that this truncation step preserves LCs to machine precision is a very big result for our
problem. It guarantees that the lack of preservation problem must lie in the redistribution
of mass to the element nodes.

The truncation step alone is obviously not satisfactory for local mass conservation,
however, so the need to redistribute the mass that was removed/added still exists. We put
forth a few alternative limiters that are also theoretically both mass and LC preserving. One
of them applies a consistent change to all nodes in the element (All Equal Value or AEV
Method), while the other applies consistent mass to the same nodes that the EV limiter
uses (Equal Mass or EM Method). The update to the truncated values in the EM is as
follows:

q̃i = q′i +
α

n(wi)

where n is the total number of i’s s.t.

{
q′i 6= qmax if α > 0
q′i 6= qmin if α < 0

(6.1)

The proofs that this method along with the AEV method preserve LCs are similar to
Equations 3.8 and 3.9, in that the proofs also have cancellation of α terms. Table 6.1
provides this list of alternatives to the redistribution scheme proposed by the EV limiter.

The AEV method can require many iterations, but the maximum of iterations in our
simulations is set to 15, because this number of iterations was found to always bring the
amount of mass above/below the max/min to below machine precision. One red flag with
these multi-iteration methods is the possiblity of an inconsistent number of iterations across
both tracers. For example, if the limiter were to perform 2 iterations on Cl and 3 iterations

N.A. Lopez and M.A. Taylor 115

Fig. 6.1: The L2 norms associated with Clz from Equation 5.1 for different mass redistribution
schemes. The truncation method did not redistribute any truncated mass.

on Cl2 due to stopping criteria that is not LC preserving, it can be seen how LC would not
be theoretically preserved for that element. However, we found that even when only one
iteration is performed, the LC preservation problem still exists. Figure 6.1 shows that EM
limiter provides significant improvement over the EV limiter out to approximately Day 10.
Eliminating the LC preservation error was a main goal of this research, and in a sense, it
was acheived. This limiter should produce a bit more discrete L2 error in φ than the EV
limiter, but it was a good alternative for our toy chemistry problem.

116 Tracer Correlation Preservation

Method Description Typical
Number of
Iterations

Conserves
Local Mass

Equal Value (EV) Method Spread positive α to all nodes that are not at
maximum or negative α to all nodes that are
not at minimum. Each node is changed by the
same amount. (See Equation 3.5)

O(100) Yes

All Equal Value (AEV)
Method

Much like the EV method, the same amount
of change is applied, but to all nodes ... even
those already at the prescribed max/min

O(101) Yes

Equal Mass (EM) Method Distributes mass to the same nodes as the
EV method, but each node receives the same
amount of mass, instead of the same change
in value. (See Equation 6.1)

O(100) Yes

Truncation Simply reset the node values that are outside
the bounds to the max/min. No further ad-
justment is done to the values.

1 No

Table 6.1: Various ways of redistributing truncated mass inside the limiter. All methods generate
L2 tracer error (not necessarily Clz error), but the EV limiter theoretically generates the least.

7. Conclusions and Future Work. We have provided an alternative to the Equal
Value limiter that does reasonably well out to 12 days, but we know that it can do much
better. We know this because in our test case, applying only the limiter truncation step (or
no limiter at all) conserves our sum of linearly correlated tracers (Clz) to nearly machine
precision at the terminator. However, we postulate that the unexpected behavior displayed
at Day 10 for the simulation without the application of the limiter may have been the
result of the previously described roundoff error artifacts. This would explain why [3]
obtained different results. Future research needs to determine if the limiters are simply
exacerbating the small breaks in correlation associated with roundoff error in the initial
condition. The problem may be unresolvable, and may just be a by-product of the toy
chemistry methodology itself. We also intend to discover the discrete error norm that the
Equal Mass limiter optimizes, what it can be used for, and why this limiter does so much
better with the terminator toy chemistry case.

REFERENCES

[1] O. Guba, M. Taylor, and A. St-Cyr, Optimization-based limiters for the spectral element method,
Journal of Computational Physics, 267 (2014), pp. 176 – 195.

[2] P. Lauritzen, P. Ullrich, and R. Nair, Atmospheric transport schemes: Desirable properties and a
semi-lagrangian view on finite-volume discretizations, in Numerical Techniques for Global Atmo-
spheric Models, P. Lauritzen, C. Jablonowski, M. Taylor, and R. Nair, eds., vol. 80 of Lecture Notes
in Computational Science and Engineering, Springer Berlin Heidelberg, 2011, pp. 185–250.

[3] P. H. Lauritzen, A. J. Conley, J.-F. Lamarque, F. Vitt, and M. A. Taylor, The terminator
”toy” chemistry test: a simple tool to assess errors in transport schemes, Geoscientific Model
Development, 8 (2015), pp. 1299–1313.

[4] P. H. Lauritzen and J. Thuburn, Evaluating advection/transport schemes using interrelated tracers,
scatter plots and numerical mixing diagnostics, Quarterly Journal of the Royal Meteorological
Society, 138 (2012), pp. 906–918.

[5] R. D. Nair and P. H. Lauritzen, A class of deformational flow test cases for linear transport problems
on the sphere, Journal of Computational Physics, 229 (2010), pp. 8868 – 8887.

N.A. Lopez and M.A. Taylor 117

[6] M. A. Taylor and A. Fournier, A compatible and conservative spectral element method on unstruc-
tured grids, Journal of Computational Physics, 229 (2010), pp. 5879 – 5895.

CCR Summer Proceedings 2015 118

FIRST-ORDER APPROXIMATE AUGMENTED LAGRANGIAN METHOD
(FOAAL) IMPLEMENTED VIA AN OBJECT-PARALLEL

INFRASTRUCTURE FOR FIRST-ORDER METHODS

GYÖRGY MÁTYÁSFALVI∗, JONATHAN ECKSTEIN† , AND JEAN-PAUL WATSON‡

Abstract. We describe the early stages of the implementation of a general purpose nonlinear solver.
This effort is part of an open-source software project tentatively named FOAAL (First-Order Approximate
Augmented Lagrangians). Our solver is based on a classical augmented Lagrangian method with a novel
inexact solution condition for the subproblems. The source-code is written in C++ using a special vector-
manipulation substrate [6]. At present, FOAAL only works in serial mode. However, our implementation
permits a ready parallelization of the optimization algorithm, since switching between serial and parallel
mode does not require any changes in the algorithm’s source code. We also provide infrastructure to support
line-search methods, and interfaces to various modeling languages, such as AMPL [8] or PYOMO [14], in
a transparent manner that does not “clutter” the principal implementation. In the future we would like to
demonstrate the usefulness of our vector-substrate tools by employing a serial version of FOAAL to solve a
real-world Unit Commitment problem, after that we plan to develop a parallel Unit Commitment “solver”
using FOAAL.

Acknowledgments. This research was supported by Sandia National Laboratories and by National
Science Foundation grant CCF-1115638.

1. Introduction. The overall motivation behind the object-parallel implementation
of FOAAL is to exploit ever-increasing computer power to solve larger continuous opti-
mization problems, or to solve problems faster so that their solution may be embedded in
other algorithms (for example, to handle discrete variables). The challenge in this field is
that while computing technology continues to grow in power, most gains are now coming
through increased parallelism and proliferation of processor cores, rather than acceleration
of individual instruction streams. Augmented Lagrangian algorithms, especially when using
recent theoretical advances, should provide a relatively simple and elegant way to adapt to
these trends in computer architecture. Nonetheless efficient implementation of numerical
algorithms in parallel computing environments can be challenging. The same underlying
algorithm may have to be re-implemented multiple times to adapt to different hardware en-
vironments or applications, and the resulting code may be difficult to read. A natural route
to more elegant and portable implementation of parallel algorithms is to use established
object-oriented programming concepts. We hope that this approach will differentiate itself
from other existing frameworks such as TAO (Toolkit for Advanced Optimization), which
is a C based method developed at Argonne National Laboratories, and other open-source
or proprietary optimization software that are less readily customizable by the user.

This paper leads through the steps and techniques taken to implement the serial ver-
sion of FOAAL using our object-parallel framework. The algorithms proposed here leverage
proven, successful methods. In addition we will use a new relative error criteria [7] to
determine with how much precision to solve the nonlinear subproblems produced by the
augmented Lagrangian algorithm. Our approach will be to use first-order methods [11,
12, 13, 2, 3] that are Hessian-free, and designed to be able to take advantage of parallel
computer architectures in a more straightforward way than competing methods. However,
theoretically FOAAL is not constrained to first-order methods to solve the subproblems.
One may consider other algorithms for the subproblems if the objective function and con-
straint properties allow it. This is also supported by the design of FOAAL, which allows for

∗Rutgers University - Doctoral Program in Operations Research, matyasfalvi@gmail.com
†Rutgers University - Department of MSIS and RUTCOR, jeckstei@rci.rutgers.edu
‡Sandia National Laboratories - Discrete Math & Optimization, jwatson@sandia.gov

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 119

a ready substitution of the subproblem solver. The result would be a general-purpose non-
linear optimization solver framework for parallel environments, capable of handling general
nonlinear constraints.

As a test case, the methodology will be applied to the extensive form of stochastic
programming problems, in particular to the unit commitment problem. Since FOAAL is
an open-source project we hope that the unit commitment example will encourage both
academic and industry professionals to use our tools to develop parallel solvers for other
applications of special interest.

The remainder of this report is organized as follows: Section 2 Introduces the theoret-
ical background of FOAAL and the relative error criterion. Section 3 describes the actual
implementation of FOAAL and how elements of our infrastructure that are specific to op-
timization problems are used in that process. Finally, in Section 4 we introduce the unit
commitment problem and go through our plan on how to extend our tools to solve the unit
commitment problem in parallel.

2. FOAAL algorithm. We consider a general continuous optimization problem of
the form

min
x∈Rn

f(x)

ST gi(x) ∈ Ki, i ∈ 1..m
(2.1)

Here, f : Rn → R and gi : Rn → Rdi (i ∈ 1..m) are continuously differentiable functions, and
Ki ⊂ Rdi (i ∈ 1..m) are closed convex cones. For example, di = 1 and Ki = {0} corresponds
to a standard equality constraint gi(x) = 0, while di = 1, Ki = (−∞, 0] corresponds to a
conventional inequality constraint gi(x) ≤ 0. Other common constraint forms, such as
semidefinite matrix constraints, can be readily modeled in this format. Now consider the
following convex optimization problem, which is a special case of the above:

min f(x)
ST h(x) = 0

g(x) ≤ 0.
(2.2)

where f : Rn → R is convex, h : Rn → Rm1 is affine, and g(x) = (g1(x), . . . , gm2(x)), where
g1, . . . , gm2 : Rn → R are convex, and f and g are differentiable. We will continue the
analysis of FOAAL by using the problem formulation in (2.2). The augmented Lagrangian
dual function LD(λ, µ) of (2.2) takes the following form:

inf
x∈Rn

{
f(x) + 〈λk−1, h(x)〉+

ck
2
‖h(x)‖2 +

1
2ck

∥∥max
{

0, µk−1 + ckg(x)
}∥∥2

}
(2.3)

Applying the proximal point algorithm (PPA) to an operator derived from the dual of (2.2),
we obtain as described in [18] the method of multipliers:

xk ∈ Arg min
x∈Rn

f(x) + 〈λk−1, h(x)〉+

ck
2
‖h(x)‖2 +

1

2ck

‚‚‚max
n

0, µk−1 + ckg(x)
o‚‚‚2

ff
(2.4)

λk = λk−1 + ckh(xk) (2.5)

µk = max
{

0, µk−1 + ckg(xk)
}

(2.6)

where ck is a sequence of scalars with infk {ck} ≥ 0, the “max” operations are interpreted
componentwise, λk−1 ∈ Rm1 and µk−1 ∈ Rm2

+ are the previous iteration’s estimates of the

120 FOAAL Via an Object-Parallel Infrastructure

Lagrange multipliers for the equality and inequality constraints in (2.2). And λk → λ̂,
µk → µ̂ converge to a root of the subgradient of −LD(λ, µ) i.e. ∇LD(λ̂, µ̂) = 0.

Under constraint qualification ∇LD(λ̂, µ̂) = 0, λ̂ ≥ 0, g(x∗) ≤ 0, h(x∗) = 0, and
〈λ, g(x∗)〉 = 0, where

x∗ ∈ Arg min
x∈Rn

{
f(x) + 〈λ̂, h(x)〉+

c∗
2
‖h(x)‖2 +

1
2c∗
‖max {0, µ̂+ c∗g(x)}‖2

}
(2.7)

yield the necessary conditions for local optimality of x∗ to (2.2) according to the Karush-
Kuhn-Tucker (KKT) conditions. For a detailed development of the FOAAL algorithm
including convergence proofs refer to [7].

In summary the general approximation framework described in [7] produces the fol-
lowing set of recursive conditions, with arbitrary starting values λ0 ∈ Rm1 , µ0 ∈ Rm2

+ and
w0 ∈ Rn:

yk = ∇x
[
f(x) + 〈λk−1, h(x)〉+ ck

2 ‖h(x)‖2 + 1
2ck

∥∥max
{

0, µk−1 + ckg(x)
}∥∥2

]
(2.8)

2
ck

∣∣〈wk−1 − xk, yk〉∣∣+
∥∥yk∥∥2 ≤ σ

(∥∥h(xk)
∥∥2 +

∥∥∥min
{

1
ck
µk−1,−g(xk)

}∥∥∥2
)

(2.9)

λk = λk−1 + ckh(xk) (2.10)

µk = max
{

0, µk−1 + ckg(xk)
}

(2.11)

wk = wk−1 − ckyk (2.12)

Here, (2.8) and (2.9) replace the exact augmented Lagrangian minimization (2.4); the “max”
and the “min” in (2.8) and (2.9) respectively are interpreted componentwise.

3. Implementation of FOAAL. In this section we will go over the object-parallel
implementation of FOAAL. First by showing parts of the C++ source-code and then by
going over it step by step. The method introduced in section 2, when implemented via our
object-parallel framework, is illustrated in figure 3.2.

What we see in figure 3.1 is the FOAAL class declaration and in figure 3.2 we have the
minimization routine of FOAAL. What makes our approach object-parallel are the following
members of FOAAL: VectorObjects (x, hx, gx, etc.), the AbstractProblem pointer
pr and the LineSearchBasedMethod pointer boxSolver. FOAAL’s constructor takes
two arguments, one AbstractProblem pointer and one LineSearchBasedMethod pointer.
The AbstractProblem class is used to initialize the VectorObject and the penalty pa-
rameter double* c members of the FOAAL class. The LineSearchBasedMethod is
used to solve the subproblems generated by the augmented Lagrangian method. The argu-
ment of the minimization routine, an AbstractTermination class, is an abstract C++
class and is passed to the LineSearchBasedMethod’s minimization routine. Through
this unified termination interface we can easily modify the termination conditions for our
subproblem solvers.

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 121

class FOAAL {

AbstractProblem* pr;
LineSearchBasedMethod* boxSolver;

VectorObject x;
VectorObject hx;
VectorObject gx;
VectorObject grad;
VectorObject lambda;
VectorObject mu;
VectorObject muProj;
VectorObject muFeas;
VectorObject zeroVec;
VectorObject w;
VectorObject wStep;

double* c;
double sigma;
double maxC;
double factorC;
double minImprov;
double prevPhiC;

double objVal;
double tol;

int augIter;
int maxAugIter;
int resetCount;

int boxIter;
bool kktNotSat;

public:
FOAAL(AbstractProblem* pr_, LineSearchBasedMethod* boxSolver_);

virtual ˜FOAAL();

VectorObject& minimize(AbstractTermination& termination);
};

Fig. 3.1: Source-code of FOAAL class members.

3.1. VectorObjects and AbstractVectors. The AbstractVector class creates a
general interface that abstracts both the representation of vectors and the methods used to
perform simple mathematical manipulations such as addition and scaling. To avoid clut-
tering algebraic expression code with excessive pointer dereferencing, we defined the class,
called VectorObject, which essentially encapsulates a pointer to an AbstractVector.

122 FOAAL Via an Object-Parallel Infrastructure

VectorObject& FOAAL::minimize(AbstractTermination& termination) {

while (augIter < maxAugIter && kktNotSat) {
augIter++;

/* Solve sub-problem */
x = boxSolver->minimize(termination);

pr->objGrad(x, grad);
pr->equConVal(x, hx);
pr->inequConVal(x, gx);

muFeas = (-1.0 / (*c)) * mu;
muProj.max(muFeas, gx);
double phiC = std::max(hx.normInf(), muProj.normInf());

/* Check KKT */
if(phiC < tol && boxSolver->getGradNormInf() < tol) {

std::cout<<"Terminating outer loop with: ";
PVAR(phiC)
kktNotSat = false;

}

/* Track accumulated "error drift" */
if(augIter <= 3) {

w = x;
} else {

w = w - (*c) * grad;
wStep = w - x;
if(kktNotSat && wStep.norm2() > 1.0e+2 * (*c) * grad.norm2() \
&& resetCount < 5) {

w = x;
resetCount++;

}
}

/* Update multipliers and parameters */
lambda = lambda + (*c) * hx;
mu = mu + (*c) * gx;
mu = muProj.max(zeroVec, mu);

/* Update penalty parameter */
if(augIter > 1 && phiC > std::max(tol, minImprov*prevPhiC)) {

(*c) = std::min(factorC * (*c), maxC);
}

prevPhiC = phiC;
}
return x;

}

Fig. 3.2: Source-code of FOAAL’s minimization method.

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 123

When implementing the AbstractVector class our basic goal was to use the operator
overloading capabilities of the C++ language [20] to be able to express simple algorithmic
manipulations of vectors in a concise, readable manner, portable without recoding between
different applications, data representations, and hardware platforms. More details about
the vector classes such as efficient overloading through delayed evaluation etc. are provided
in [6]. The AbstractVector class makes it possible to use different vector classes for
linear-algebra computations without having to change the optimization algorithm. For
example one may readily use the Epetra package, part of the Trilinos project [15], to do linear
algebra operations. Because this construct easily allows us to parallelize the underlying
linear-algebra of optimization algorithms it is a fundamental building block of our object-
parallel framework.

AbstractVector

Serial Vector Class Parallel Vector Class

Fig. 3.3: Inheritance of Vector classes

3.2. Optimization-Specific Infrastructure.

3.2.1. The AbstractProblem Class and Its Derived Classes. The AbstractProblem
class constitutes a unified interface through which our optimization algorithms interact with
problem instances and third party modeling languages. One defines a class of problems by
deriving a class from AbstractProblem (although perhaps indirectly). AbstractProblem-
derived classes hold problem instance data and contain methods for objective function and
gradient evaluation. The problem class also stores upper and lower bounds on variables,
when present. AbstractProblem-derived classes contain for example methods to repre-
sent general constraints, a VectorObject that represents the solution algorithm starting
point, and abstract methods to generate objects for caching function and gradient values.
Through the VectorObject representing the algorithm starting point, the Abstract-
Problem-derived class determines the vector class that the solution algorithm uses to exe-
cute the linear algebra computations. The algorithm classes initialize their VectorObject
members by executing “cloning” methods on the initial point provided by the problem class.
For the serial version of FOAAL we have created the AugLagAslProblem class, which is
passed to the constructor of FOAAL. This problem class is derived from the AslProblem
problem class.

The AslProblem accommodates an interface to the AMPL Solver Library [9] (ASL),
which in turn provides all the necessary information to create a problem instance in serial.
It also contains routines to evaluate the objective function and its gradient as well as the
problem constraints and their gradients. The AslProblem problem uses ASL routines to
read “.nl” [10] files and to write “.sol” files. The “.nl” file format is used by many modeling
languages to communicate problem instances to solvers, and the “.sol” file by many solvers
to pass the optimal solution back to the modeling environment. Hence the AslProblem

124 FOAAL Via an Object-Parallel Infrastructure

AbstractProblem

AslProblem

AugLagAslProblem

Fig. 3.4: Inheritance of FOAAL’s problem classes

$ pyomo solve --solver=FOAAL PyomoModel.py

Fig. 3.5: PYOMO solve command, where solver is FOAAL.

class interfaces FOAAL with many popular modeling languages. For example FOAAL can
be easily called from PYOMO [14] with the command in figure 3.5.

AugLagAslProblem inherits most of the AslProblem routines, except for the ob-
jective function value and objective function gradient computations since those need to be
modified to accommodate the subproblem solver. As described in section 2 the subproblems
constitute unconstrained minimizations of the form (2.3). Therefore the subproblems work
with the augmented Lagrangian function instead of the actual objective function. The dif-
ference is shown in figures 3.6 and 3.7. If (2.2) contains explicit variable bounds of the form
a ≤ x ≤ b, we may elect to directly enforce these in the supbroblems, rather than attach-
ing Lagrange multipliers to them. In that case, the subproblems become box-constrained
minimization problems and the gradient condition in (2.8) becomes a more complicated
subgradient condition.

For parallel applications, where the objective function is known in advance, and par-
allel function evaluation and gradient computation are possible, we can readily construct
a problem class that supports parallel executions. It is the AbstractProblem-derived
class, through the algorithm starting point vector, that determines how decision vari-
ables are distributed and possibly replicated among processors. Thus in addition to the
AbstractVector the other fundamental building block of our object-parallel framework
is the AbstractProblem class.

3.2.2. The LineSearchBasedMethod and Its Derived Methods. The computa-
tionally most intensive part of FOAAL is solving the subproblems (2.3) generated by the
algorithm. Therefore it is important to have infrastructure in place that allows the efficient
implementation of the subproblem solvers.

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 125

double AslProblem::objVal(VectorObject &y) {
numObjEval++;
return objval(0, y.getData(), NULL);

}

void AslProblem::objGrad(VectorObject& y, VectorObject& grad) {
numGradEval++;
objgrd(0, y.getData(), grad.getData(), NULL);

}

Fig. 3.6: AslProblem objective value and gradient functions.

So far we have implemented two subproblem solvers in our object-parallel framework,
one is a conjugate gradient (CG) method by Hager and Zhang [11, 12] for unconstrained
problems, the other is a non-monotone spectral projected gradient [2, 3] (SPG) method ca-
pable of handling simple variable bounds. Both of these algorithms employ line-search pro-
cedures. Essentially, after determining a step direction dk, they perform some kind of back-
tracking procedure to determine the step-size αk in the step calculation xk+1 = xk + αkd

k.
To promote efficient implementation of such procedures, our framework provides a base class
called LineSearchBasedMethod. This class also provides built-in members for scalar and
vector quantities typically maintained by line search algorithms, including the objective
values, the current iterate, the objective function gradient, and the search direction. Cru-
cially, the LineSearchBasedMethod class also holds an array of PointMemory objects.
PointMemory is a class designed to cache function values, gradient values, and, through
derived classes, related application-specific information. LineSearchBasedMethod pro-
vides methods Phi and GradPhi for computing the value and gradient of the line-search
function φk(α) = f(xk + αdk), where f is the problem objective function. In some line-
search procedures, φk(α) or ∇φk(α) may be evaluated more than once at the same value of
α; for example, this phenomenon can occur quite often in the conjugate gradient algorithm
of [13]. The caching mechanism built into the Phi and GradPhi methods prevents poten-
tially time-consuming recomputation of the function value or gradient in such cases, while
keeping the solution algorithm code free of clutter from caching-related details. Another
possible situation is that the line-search algorithm may compute φk(α) and subsequently
compute ∇φk(α) for the same value of α. For many problem classes, these two computa-
tions share significant common underlying computations, whose results it is more efficient
to cache than to recompute. Application-specific classes derived from PointMemory may
be used for this purpose. Since most first-order methods employ some sort of line-search
procedure we anticipate that these utilities will be useful for future work as well.

126 FOAAL Via an Object-Parallel Infrastructure

double AugLagAslProblem::objVal(VectorObject &y) {
numObjEval++;

double value = objval(0, y.getData(), NULL);

if(numEquCon > 0) {
equConVal(y, hx);
value += lambda.inner(hx) + 0.5 * c * hx.norm2sq();;

}

if(numInequCon > 0) {
inequConVal(y, gx);
inequPen = mu + c * gx;
inequPen.max(inequPen, zeroVec);
value += 1.0/c * 0.5 * (inequPen.norm2sq() - mu.norm2sq());

}
return value;

}

void AugLagAslProblem::objGrad(VectorObject& y, VectorObject& grad) {
numGradEval++;

objgrd(0, y.getData(), grad.getData(), NULL);

if(numEquCon > 0) {
for(int i=0; i<numEquCon; ++i) {

equConiGrad(i, y, conGradient);
grad += (lambda[i] + c*equConiVal(i, y)) * conGradient;

}
}

if(numInequCon > 0) {
for(int i=0; i<numInequCon; ++i) {

inequConiGrad(i, y, conGradient);
grad += std::max(0.0,

mu[i] + c * inequConiVal(i, y))

* conGradient;
}

}
}

Fig. 3.7: AugLagAslProblem objective value and gradient functions.

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 127

LineSearchBasedMethod

SPG CG

Fig. 3.8: Inheritance of FOAAL’s line-search based methods

128 FOAAL Via an Object-Parallel Infrastructure

4. Solving problems with FOAAL. So far we have successfully solved smaller non-
linear programming problems with FOAAL such as: airport, avgasa, cb3, discs,
goffin, hadamard, himmelp6, hs117, hs268, ssebnln, womflet from the CUTE
test set [4], and the extensive form of a stochastic programming problem by Birge and
Louveaux also known as the farmer problem [1]. Our main interest will be to solve stochastic
programming problems so we will focus our attention on these problems in the following
sections.

4.1. Stochastic Programming and the Unit Commitment Problem. A stochas-
tic programming problem is a mathematical programming problem, where some of the
parameters are random. We talk about solving a stochastic programming problem if we
take into account the probability distribution of the random elements in the underlying
problem. Stochastic programming problems are dealt with extensively in the following lit-
erature: [1, 17, 19]. We are interested in a special class of stochastic programming problems
called the Unit Commitment problem.

4.1.1. The Unit Commitment Problem. The traditional Security Constrained
Unit Commitment (SCUC) problem schedules the on/off states of generating units for the
next operating day to minimize total production costs based on load and non-dispatchable
generation forecasts subject to power balance, power transfer limits and other operational
and economical constraints. This can be formulated as:

min
∑
k∈K

∑
j∈J

cPj (k) + cuj (k) + cdj (k)

ST
∑
j∈J

pj(k) = D(k), ∀k ∈ K

pj(k) ∈ Π, ∀j ∈ J, ∀k ∈ K

(4.1)

where cPj represents production costs, cuj represents startup costs, cdj represents shutdown
costs, D(k) stands for various loads (demands) in period k and Π represents the region of
feasible production of all generating units in all time periods. The specific nature of Π is
model-dependent. The sets K and J are time intervals in the problem time span and the
generation units in the system, respectively. Detailed development of the above model and
numerous other SCUC formulation can be found in the literature [5].

In (4.1) the D(k)s are random and depend on consumer behavior and various other
circumstances. For example, during the summer on a hot day consumers will most likely use
more electricity to power air conditioning systems than on a cooler day. As a consequence we
may identify three possible outcomes: high, medium and low demands and associate certain
probabilities with them. This model gives us three different scenarios for our stochastic
programming problem. This formulation will allow us to come up with a scenario tree that
describes our optimization problem, where the possible scenarios at time period k depend on
the events that took place at time periods k− 1, k− 2, . . . , 0. If we want to solve the SCUC
as a stochastic programming problem we will have to take the above mentioned scenarios
and time periods into account when performing our optimization.

4.2. The serial solution of the Unit Commitment problem via FOAAL. What
is most important for FOAAL is that the (4.1) formulation of the SCUC can be expressed
in the form of (2.2). We will use PYOMO to generate the extensive form of the unit
commitment problem using the convert option. The command is illustrated in figure 4.1; it
generates a “.nl” file, which then can be handed to FOAAL. As explained in section 3.2.1
the AugLagAslProblem class creates a problem instance for FOAAL from the “.nl” file.

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 129

$ pyomo convert --output=Ef.nl RefModel.py Scenario1.dat Scenario2.dat ...

Fig. 4.1: PYOMO command to generate the extensive form of stochastic programming
problems.

4.3. How to extend the serial Unit Commitment problem solver via FOAAL
to obtain a parallel unit commitment solver. The parallel solution can be envisioned
in the following manner:

1. Each processing unit receives a “.nl” file generated by PYOMO that holds informa-
tion about a subset of the scenario tree called a “bundle”; see figure 4.2.

2. Variables and constraints except the ones in the leaf nodes are replicated in each
processor.

3. Each processing unit then solves the given “bundle”, which we’ll call the scenario
subproblem.

4. Each processing unit updates the Lagrange multipliers by communicating with other
processes.

5. 3-4 repeats until an implementable solution is found.
In the above description the first two steps would be achieved by PYOMO, where PYOMO
replicates the “non-anticipative variables” and creates the .nl files accordingly. Once a
solution is found, PYOMO will have a routine in place that can merge the “.sol” files
created by FOAAL.

130 FOAAL Via an Object-Parallel Infrastructure

Present

Period 1
HIGH

Period 1
MEDIUM

Period 1
LOW

Period 2
HIGH

Period 2
MEDIUM

Period 2
LOW

Fig. 4.2: A bundle of the scenario is tree signaled by dashed lines.

5. Conclusions. The implementation of FOAAL suggests that our object-parallel
framework is suitable to implement optimization algorithms efficiently and in a readable
manner. Since the resulting source-code is clean from “clutter” we assume that it will be
much easier to maintain and further improve FOAAL’s code-base. We hope that this will
be an attractive trait of our object-parallel approach. Our philosophy is that if the appli-
cation developers can focus on efficiently performing just a few operations, namely function
evaluation and gradient evaluation, in whatever way they see fit, then our object-oriented
framework can use those low-level operations to construct an efficient parallel solver. The
benefits of the operator overloading techniques are to make the solver-level code easier to
understand and maintain, and to facilitate relatively easy development of new solver algo-
rithms as necessary.

There is still work that needs to be done for FOAAL to deliver a solution to the SCUC
that is competitive with currently available solver packages. For example, it is impor-
tant that FOAAL’s subproblem solver handles the functions produced by the augmented
Lagrangian robustly. In our experience this is not always the case with CG and SPG. How-
ever, we have also observed that if the subproblems are handled efficiently FOAAL very
rarely takes more than 10 iterations to converge.

Since this project is still in its early stages we expect that these initial hurdles can be
overcome and that we can use FOAAL in conjunction with PYOMO to solve real-world unit
commitment problems.

REFERENCES

G. Mátyásfalvi, J. Eckstein, and J. P. Watson 131

[1] J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, 1997.
[2] E. G. Birgin, J. M. Mart́ınez, and M. Raydan, Nonmonotone spectral projected gradient methods

on convex sets, SIAM J. Optim., 10 (2000), pp. 1196–1211.
[3] , Inexact spectral projected gradient methods on convex sets, IMA J. Numer. Anal., 23 (2003),

pp. 539–559.
[4] I. Bongartz, A. R. Conn, N. Gould, and P. L. Toint, Cute: Constrained and unconstrained testing

environment, ACM Trans. Math. Softw., 21 (1995), pp. 123–160.
[5] M. Carrion and J. M. Arroyo, A computationally efficient mixed-integer linear formulation for the

thermal unit commitment problem, IEEE Transactions on Power Systems, 21 (2006), pp. 1371–
1378.

[6] J. Eckstein and G. Mátyásfalvi, Object-parallel infrastructure for implementing first-order methods,
with an example application to lasso, Optimization Online: 4748, (2015).

[7] J. Eckstein and P. J. S. Silva, A practical relative error criterion for augmented Lagrangians, Math.
Program., 141 (2013), pp. 319–348.

[8] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming, Duxbury Press/Wadsworth, 1993.

[9] D. M. Gay, Hooking your solver to ampl, Tech. Rep. 97-4-06, Bell Laboratories, 04 1997.
[10] , Writing .nl files, Tech. Rep. SAND2005-7907P, Sandia National Laboratories, 2005.
[11] W. W. Hager and H. Zhang, A new conjugate gradient method with guaranteed descent and an

efficient line search, SIAM J. Optim., 16 (2005), pp. 170–192.
[12] , Algorithm 851: CG DESCENT, a conjugate gradient method with guaranteed descent, ACM

Trans. Math. Softw., 32 (2006), pp. 113–137.
[13] , A new active set algorithm for box constrained optimization, SIAM J. Optim., 17 (2006),

pp. 526–557.
[14] W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff, Pyomo–optimization modeling in

python, vol. 67, Springer Science & Business Media, 2012.
[15] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.

Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the
Trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[16] J. Ostrowski, M. F. Anjos, and A. Vannelli, Tight mixed integer linear programming formulations
for the unit commitment problem, IEEE Transactions on Power Systems, 27 (2012), pp. 39–46.

[17] A. Prékopa, Stochastic Programming, Kluwer Academic Publishers, 1995.
[18] R. Rockafellar, Augmented lagrangians and applications of the proximal point algorithm in convex

programming, Math. Oper. Res., 1 (1976), pp. 97–116.
[19] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Programming Modeling

and Theory, MPS-SIAM Series on Optimization, 2nd ed., 2014.
[20] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Boston, MA, USA, 3rd ed., 2000.

CCR Summer Proceedings 2015 132

LOCALIZED OPTIMIZATION-BASED REMAP FOR TRANSPORT

SCOTT A. MOE∗, PAVEL B. BOCHEV† , KARA J. PETERSON‡ , AND DENIS RIDZAL§

Abstract. We present a new localized conservative and bounds preserving optimization-based remap
(`OBR) algorithm. The algorithm continues the developments of [4], which uses optimization to enforce
relevant physical properties in a mass-density remap. The resulting quadratic program (QP) formulation
of remap enforces mass conservation by a single linear constraint. This non-local constraint can lead to
small, yet global, “mass spreading” which is undesirable in applications such as incremental remap and
semi-Lagrangian transport schemes. In this context, the solution at a point in space should not be affected
by information beyond a certain domain of influence determined by the time step and the specific velocity
field. This motivates a modification of the OBR in which the global mass conservation constraint is no
longer enforced directly. Instead global mass conservation is enforced using a two step procedure designed
to minimize the subset of the grid on which the update procedure will have a nonphysical domain of
dependence. In order to assign degrees of freedom to this sub-domain we will use an indicator correlated with
the expected accuracy of the target solution. Since we cannot know this sub-domain analytically we propose
a simple optimization procedure which uses a bisection algorithm to find a quasi-optimal approximation of
this domain while ensuring that the OBR feasible set remains nonempty. Application to semi-Lagrangian
transport illustrates the improvements enabled by the new `OBR.

1. Introduction. Preservation of relevant physical properties remains a fundamental
challenge in the discretization of PDEs. This is especially true for the numerical solution of
transport equations, where one has to account for properties such as conservation of mass
and local solution bounds. Schemes that do not preserve these properties lead to nonphysical
solutions exhibiting spurious oscillations and/or inaccurate mass and stability problems.

This work continues the development of a divide-and-conquer optimization-based ap-
proach for the formulation of feature preserving discretizations that seek to directly preserve
a PDE’s physical properties[7, 6, 3, 5, 4].

In [4, 2] the authors apply the divide-and-conquer strategy to semi-Lagrangian transport
using finite volume and spectral element discretizations. This approach, termed optimization
based transport (OBT), combines a Lagrangian update (discussed in the next section) step
with an optimization-based remap (OBR) to transfer data between a pair of meshes one
of which is static and one of which is deformed by the velocity field. In this context OBR
is used to enforce mass conservation and an approximation of the monotonicity preserving
property. Specifically, solution of a quadratic program (QP) that seeks to minimize the
`2 norm difference between a solution satisfying these constraints and a target solution
accomplishes the data transfer.

In providing an efficient way to enforce local bounds and mass conservation regardless of
the underling discretization OBT has proven to be a powerful idea. Since the OBT separates
accuracy and efficiency considerations from the enforcement of the physical properties, one
can select the implementation of the Lagrangian update that is most appropriate for a
particular application.

For example consider OBT in which the Lagrangian update is implemented by a high
order spectral element discretization. With OBR it is possible to create a conservative and
quasimonotone semi-Lagrangian scheme of arbitrary order that uses only interpolations in
the Lagrangian update step. This scheme is extremely efficient because interpolation is a
cheap operation and semi-Lagrangian schemes can avoid the reduced time-step restrictions
that are usually associated with high order schemes applied to hyperbolic PDEs[2]. High

∗University of Washington Department of Applied Mathematics, smoe@uw.edu
†Sandia National Laboratories, pbboche@sandia.gov
‡Sandia National Laboratories, kjpeter@sandia.gov
§Sandia National Laboratories, dridzal@sandia.gov

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 133

order semi-Lagrangian schemes that are conservative are typically much more expensive
because they must proceed in a dimensional split manner and high-order splitting schemes
require many sub-steps [11].

2. Mathematical Preliminaries. In this work we consider the linear transport equa-
tion

∂ρ

∂t
+∇ · (νρ) = 0 (2.1)

where ρ is a non-negative density function and ν is a given velocity field. For simplicity we
assume that ∇ · ν = 01.

A semi-Lagrangian scheme is defined as any scheme that combines a Lagrangian update
to advance data in time with a constrained interpolation (remap) between a pair of grids.
One of these grids is a static one which contains the solution at the present and future time
steps, while the second grid is an auxiliary grid obtained by projecting the fixed grid forward
or backward in time; see Fig.2.1.

A Lagrangian update mathematically represents an analytical implementation of Equa-
tion (2.1) and as such it exactly preserves all of the correct physical properties. As a result,
the origin of all nonphysical properties in any semi-Lagrangian scheme is confined to the
remap step.

Semi-Lagrangian schemes can involve Lagrangian steps that advance forward in time
or backward in time. The semi-Lagrangian algorithm, in either case, will follow one of the
flow diagrams indicated in Figure 2.1. In the forward in time case data on a domain ΩS is
advected along characteristics to obtain data at some later time tn+1 on a deformed domain
ΩD. This data must then be remapped back onto the domain ΩS . In the backward case the
static grid ΩS is projected backward in time along characteristics to define the deformed
grid ΩD. The data at time-step tn is then remapped onto ΩD. Following this data at time
tn on ΩD is trivially advected forward in time onto the grid ΩS at time tn+1. Because
the backward scheme remaps from a fixed to a deformed grid, it is preferred in settings
where the former can be chosen to be uniform. In particular, it is used exclusively for tracer
transport in atmospheric simulations. For this reason in this paper we focus on backward
in time semi-Lagrangian schemes that use the OBR to implement the remap step. We refer
to such schemes as Optimization Based Transport (OBT). An OBT scheme enforces mass
conservation by a single global linear constraint, which ties together all degrees of freedom.
Thus, in principle, to satisfy the mass conservation OBT may borrow from or send mass to
cells beyond a given cell’s domain of influence as determined by the velocity ν and the time
step. We will refer to this phenomenon as “mass-spreading”.

Mass-spreading is nonphysical for transport because the characteristics should determine
a finite domain of influence for every point in ΩS . However, the global connection between
all degrees of freedom can allow density to spread further than it would spread physically.
This problem has previously been pointed out in the literature [1].

Remark 1. The flux-form of OBR [5] enforces mass conservation by using conservative
fluxes to compute new cell masses. This form of OBR is closely related to the Flux Corrected
Remap (FCR) [10] and avoids the issue of mass-spreading. However, in the context of
transport applications the flux form tends to be less efficient than the mass-form OBR.

Remark 2. Because at the remap step OBT finds a globally optimal solution of a QP it
produces the best possible, with respect to the `2 distance, approximation of the data that also
satisfies the physical bounds. In other words, a solution obtained by any other means, e.g.,

1Note that this means that ρ is a both a density function and a passive tracer that is constant along
characteristics.

134 Localized Optimization-Based Remap for Transport

tn tn+1

ΩS ΩS

ΩD

R
L

(a) Backward semi-Lagrangian scheme

tn tn+1

ΩS ΩS

ΩD

RL

(b) Forward semi-Lagrangian scheme

Fig. 2.1: The two-possible progressions of the semi-Lagrangian OBT scheme. L indicates
the Lagrangian update and R indicates the constrained remap (OBR).

monotone reconstruction, or flux corrected transport can only match the unlimited solution
as closely as the OBT solution and in most cases it will match less well (note that this does
not guarantee that the OBT solution is the best approximation of the exact solution).

2.1. Optimization Based Remap. A key step in a backward OBT scheme is the
optimization-based remap from ΩS to ΩD. The input for this step is the vector ρ̃ ∈ RN of
approximate density values and vectors ρ̄,ρ

¯
∈ RN of physically-motivated local bounds for

the density. In addition, we are also given a constant scalar quantity M , which specifies the
total mass in ΩS .

Remark 3. In a finite volume scheme ρ̃ contains an approximation of the mean cell
density on ΩD computed using the solution on ΩS. In a spectral element scheme ρ̃ contains
point density values at the departure Gauss-Legendre-Lobatto (GLL) points in ΩD. However
OBR is completely agnostic to how ρ̃ has been obtained or what its degrees of freedom repre-
sent. The only aspect of the scheme that reflects the underlying discretization is a vector of
weights ω ∈ RN that enters the computation of the total mass M . In a finite volume scheme
this vector represents the cell volumes, while in the spectral element case it contains the GLL
quadrature weights. In what follows we will assume that OBR is being implemented using a
weighted `2 norm with diagonal weight matrix WFor examples of specific implementations
see [4, 8, 1, 2].

OBT uses ρ̃, ρ̄,ρ
¯

and M to compute a solution ρ∗ on ΩD by solving the following QP:

ρ∗ = arg min
ρ

‖ρ̃− ρ‖2W such that

{
ωTρ = M

ρ
¯i
≤ ρi ≤ ρ̄i ∀1 ≤ i ≤ N

(2.2)

This QP has an attractive structure that lends itself to efficient optimization algorithms.
The inequality constraints in (2.2) enforce the local solution bounds that hold for (2.1),
while the equality constraint enforces the conservation of total mass.

3. Mass Spreading with OBR. Although (2.2) can be solved very efficiently the
globality of the mass conservation constraint represents a potential liability for transport
applications. The reason is that solutions of (2.1) possess a finite domain of influence, i.e.,

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 135

a solution value at a given point depends only on the solution values along the streamline
connecting that point to another point as determined by the velocity field and the time-
step. At the same time, due to its global nature, the first constraint in (2.2) can potentially
violate this property, i.e., a solution value at a given point may depend on all other solution
values. This non-locality of the numerical method may result in a solution that displays
nonphysical behavior.

In the following example, which is based on the example in [1] on page 268, we will
illustrate non-local mass spreading with OBR. The numerical scheme implemented is a
spectral element discretization using third order polynomials with semi-Lagrangian time-
stepping. More information about this specific implementation of OBT can be found in
[2].

The example involves a rapidly decaying smooth density profile in a velocity field that
induces solid body rotation:

ρ = exp(−β2((
x− x0

0.1
)2 + (

y − y0

0.08
)− 1)2) (3.1)

with β = 2,x0 = 0.5 and y0 = 0.45.

(u, v) =
(

(y − 1
2

),−(x− 1
2

)
)

(3.2)

In Figure 3.1 we see that initially the solution sits in a zero density vacuum and since
the example uses a solid body rotation velocity field one would expect the solution to still
be in a vacuum at the final time. Instead we see that a small amount of mass has spread
throughout the domain. The magnitude of the spreading is small so it should not be a
problem in many situations, but this could be important when simulating something where
zero density is qualitatively different from a non-zero but small density. The results in
Figure 3.2 were obtained using a second order finite volume scheme with a slope limiter.
The scheme was chosen to have a domain of influence that is much closer to the physical
domain of influence. This scheme was implemented using the same number of degrees of
freedom as the spectral element discretization. Notice that even though the solution does
not appear to be as accurate as the spectral element solution it displays little mass spreading.
From this experiment we can infer that if OBR was modified so that each degree of freedom
maintained a smaller domain of influence this would mitigate the mass spreading.

136 Localized Optimization-Based Remap for Transport

(a) Distribution at t = 0 (b) Distribution at t = 0 (Log Scale)

(c) Distribution at t = 2π (Log Scale)

Fig. 3.1: Solid body rotation of a smooth density profile using the semi-Lagrangian spectral
element method with degree 3 polynomials and OBR based limiting[2]. These examples
were run on an 80× 80 mesh with 9 DOFs per cell. At the final time much of the domain
has nonzero density.

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 137

Fig. 3.2: Solid body rotation of a smooth density profile using a finite volume discretization
with linear a linear reconstruction and a Van-Leer limiter. This problem was run on a
240× 240 mesh.

138 Localized Optimization-Based Remap for Transport

4. A Simple Smoothness Indicator. When OBR computes a solution it is comput-
ing the closest solution in the `2 norm to the target solution. However the accuracy of the
target solution itself could be highly variable throughout the domain. For example in any
large regions where the solution takes a constant value the target is most likely extremely
accurate (this is why mass-spreading is most visible in the large constant regions of the
domain).

Perhaps one way to control mass spreading is to restrict the domain used in the opti-
mization problem to a region where one can expect that the target solution will be least
accurate. Typically the numerical approximation to the solution of a PDE will be least
accurate in areas of low regularity or high variation. Assuming that the upper and lower
bounds used in OBR are somewhat accurate we can use (ρ̄i − ρ

¯i
) as an estimate of the size

of the variation in the target solution near degree of freedom i. This is essentially a very
simple to evaluate smoothness indicator.

5. Localized OBR. One way to reduce the non-physical spread of mass from OBR
would be to split it into two optimization problems. One optimization problem would only
enforce quasimonotonicity. The other optimization problem would enforce global conserva-
tion as well. Of course these problems could not be completely decoupled as the solution
of the first optimization problem would change the conservation constraint in the second
optimization problem.

Define the set of all cell indices I = {i|1 ≤ i ≤ N}, and also define two disjoint subsets
of I, I1 and I2, such that I = I1 ∪ I2 and I1 ∩ I2 = ∅. Let us define ρI2 and ρI1 as the
portions of the vector ρ that correspond to subset I2 or I1 respectively. Additionally we will
need to define modified weight matrices WI1 and WI2 . Computing these two matrices is
trivial as the weight matrix W is diagonal. We will then split the typical OBR optimization
problem into two optimization problems that must be solved in the order listed:

ρ∗I2 = arg min
ρ

‖ρ̃I2 − ρI2‖2WI2
s.t. ρ

¯i
≤ ρi ≤ ρ̄i ∀i ∈ I2 (5.1)

ρ∗I1 = arg min
ρ

‖ρ̃I1 − ρI1‖2WI1
s.t.

{
ωTI1ρI1 = M − ωTI2ρ∗I2
ρ
¯i
≤ ρi ≤ ρ̄i ∀i ∈ I1

Using the smoothness indicator defined in Section 4 it is possible to create an algorithm
that decomposes the degrees of freedom into two sets. Notice that

ρ̄i − ρ
¯i
≥ 0 and ρ̄i − ρ

¯i
≤ max

i

(
ρ̄i − ρ

¯i

)
If we define

Ic = {i|ρ̄i − ρ
¯i
≥ C max

i

(
ρ̄i − ρ

¯i

)
}

then |I0.0| = |I| and I1.0 gives the subset of the domain that has the largest possible variation.
It seems likely that the target solution is least accurate on the subset |I1.0|. This suggests
that we should attempt to find the maximum value of C ∈ [0, 1] such that ∃ a solution to
Equation (5.1) with I1 = Ic. Equation (5.1) has a solution as long as the constraint

ωTI1ρI1 = M − ωTI2ρI2
does not conflict with the constraint

ρ
¯i
≤ ρi ≤ ρ̄i ∀i ∈ I1

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 139

Theorem 5.1. The optimization problem in Equation (5.1) has a solution iff

ωTI1ρ¯ I1
≤M − ωTI2ρ∗I2 ≤ ωTI1 ρ̄I1 (5.2)

Proof. The function ωTI1ρ¯I1
is a multilinear function. If we parameterize the line between

x1 = ρ
¯I1

and x2 = ρ̄I1 by a single parameter θ then ωTI1ρ¯
(θ)I1 is a continuous function of θ

that obtains values on either side of

x3 = M − ωTI2ρI2
So by the Mean Value Theorem or the properties of multilinear functions ∃ θ such that

ωTI1ρI1(θ) = x3

To show this from the other direction notice that if ∃ θ such that ωTI1ρI1(θ) = x3 such that
ρ
¯i
≤ ρ(θ)i ≤ ρ̄i ∀i ∈ I1 then we can easily see that Equation 5.2 must be satisfied by

taking the product of this inequality with ωTI1 .

5.1. The Support Minimization Algorithm. Verifying whether the property in
Equation (5.2) is satisfied only involves computing dot products and so it can rapidly be
done repeatedly. This becomes the basis for an efficient algorithm to implement this localized
version of OBR.

1. Initialize Co1, Cn = 0,Co2 = 1, k = 0 and N1 = |I|
2. While k < MaxIter
3. Compute Ic = {i ∈ I|(ρ̄i − ρ

¯i
) > Cn maxi(ρ̄i − ρ

¯i
)}

4. Compute I2 = I \ Ic
5. Find ρI2 = median

(
ρ
¯I2

, ρ̃I2 , ρ̄I2

)
6. Compute Bl = ωTIcρ¯Ic

and Bu = ωTIc ρ̄Ic
7. if Bl ≤M − ωTI2ρI2 ≤ Bu• I1 := Ic

• Set k = k + 1, Co1 = Cn, Cn = Cn+Co2
2• if |Ic| = N1 break, otherwise set N1 = |Ic|.

8. else k = k + 1,Co2 = Cn,Cn = Cn+Co1
2

Increasing C monotonically reduces |Ic| so a maximum admissible C value is guaranteed
to exist. However the above bisection algorithm is not guaranteed to find the absolute
minimum feasible set, instead it finds a support set that is nearly minimal. Because of this
we say that the set computed is the quasiminimal feasible set. In Figures 5.1 and 5.2 we
see the general performance of this algorithm. The first density profile is defined in Section
3. The second density profile originates in [9]. In each block we plot the density profile in
Figure (a). In the subsequent figures we plot an indicator function that is 1 if the cell is in
I1 and 0 otherwise. The color-scale for all of those plots has 1 corresponding to yellow and
0 corresponding to dark blue. We see that for the smooth profile this algorithm creates a
tiny set I1. This indicates that the underlying approximation target (in this case obtained
by a finite volume scheme) is doing very well. However on the discontinuous example we
see that I1 is somewhat larger and in the end it contains essentially the cells on which the
density profile is discontinuous.

5.1.1. Computational Cost. In general predicting the computational cost of this
algorithm is difficult as it relies on a number of factors such as the density profile this
method is being applied to (in particular its smoothness). However we can see the scaling
behavior of each step:

140 Localized Optimization-Based Remap for Transport

(a) Density Profile (b) First Iteration

(c) Second Iteration (d) Seventh Iteration

Fig. 5.1: The results of the algorithm described in Section 5.1 applied to the profile shown
in figure (a). The other figures show the cells in set I1 after various numbers of iterations
of the algorithm introduced in Section 5.1.

• The first search to obtain Ic will scale like N
• Finding ρI2 scales like |I2|
• Testing if the proposed Ic is a feasible set will scale like |Ic|+ |I2| = N (adding the

costs of several vector dot products)
• The previous steps will be repeated some number of times until a good subset is

discovered, but it is impossible to know how many times it must be repeated.
• Finally the constrained optimization scheme itself will scale like |I1|.

No step of this algorithm scales worse than the quadratic program in global OBR. The
localized OBR may even be cheaper if the globally coupled constrained optimization problem

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 141

(a) Density Profile (b) First Iteration

(c) Second Iteration (d) Fourth Iteration

Fig. 5.2: The results of the algorithm described in Section 5.1 applied to the profile shown
in figure (a). The other figures show the cells in set I1 after various numbers of iterations
of the algorithm introduced in Section 5.1.

is slow to converge.

142 Localized Optimization-Based Remap for Transport

(a) Final Distribution using OBR(Log Scale) (b)

Fig. 6.1: In Figure (a) we rerun the example from Section 3 with the Sparse OBR scheme.
Figure (b) shows slices at x = 0.53 of the errors obtained by both methods.

6. Numerical Results.

6.1. The Smooth Example. Re-implementing the example from Section 3 with the
sparse OBR scheme we obtain the results shown in Figure 6.1. Compare this slice plot to
the slice plot in [1]. The error for the sparse OBR scheme is machine precision outside of the
center of the mesh where the density has high variation. The one negative of this scheme
is that it has a relatively large point-wise error in two locations of higher variation. This is
likely because for this smooth example very few cells are included in the optimization step,
and so this solution cannot be as accurate as global OBR. Perhaps it would be possible to
mitigate this by forcing the optimization scheme to find a partition of cells that has some
higher minimum number of cells in I1, but this would introduce a free parameter into the
algorithm.

6.2. A Discontinuous Example. To illustrate the performance of this scheme on a
discontinuous example we will turn to the example in Figure 5.2. This example will be run
on a 125× 125 degree of freedom finite volume grid using global OBR, localized OBR and
linear reconstruction with Van-Leer slope limiting. We will also switch velocity fields, to
show localized OBR’s performance in a deformational flow. Our velocity field is given in
Equation 6.1. Looking at the results we see that localized OBR appears to give the best
results even beating the slope limiting scheme.

[
u
v

]
=
[

sin2(πx) sin(2πy)g(t)
− sin2(πy) sin(2πx)g(t)

]
(6.1)

S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal 143

(a) Initial Density Profile (Log Scale) (b) Globally coupled OBR (Log Scale)

(c) t = 0.25 Van-Leer Limiting (Log Scale) (d) t = 0.25 Sparse OBR (Log Scale)

Fig. 6.2: The results of the algorithm described in Section 5.1 applied to the profile shown
in figure (a). The other figures show how sparse OBR compares to OBR and a traditional
slope limiting scheme.

7. Conclusions. We have introduced a localized, conservative and bounds preserving
OBR scheme that effectively eliminates nonphysical mass spreading. This localized OBR
computes a quasiminimal feasible set on which the conservation constraint must be enforced.
The quasiminimal set is found by an efficient bisection method. This additional optimization
step scales the same as the QP in the global OBR scheme so performance is not negatively
impacted by switching from global OBR to localized OBR. Schemes using this localized
OBR produce results that, in terms of mass spreading, are comparable to methods with
numerical domains of influence that match the physical domains of influence implied by the
PDE. Additionally we have effectively implemented localized OBR using both finite volume
and spectral element discretizations. In fact localized OBR is identical no matter what
numerical discretization it is combined with. It should be possible to extend this algorithm
to other optimization based schemes because the steps to find the quasiminimal feasible set

144 Localized Optimization-Based Remap for Transport

are unaffected by the time-stepping scheme used. Future work should focus on exploring
this possibility.

REFERENCES

[1] R. Anderson, V. Dobrev, T. V. Kolev, and R. Rieben, Monotonicity in high-order curvilinear
finite element arbitrary lagrangian–eulerian remap, International Journal for Numerical Methods
in Fluids, 77 (2015), pp. 249–273.

[2] P. Bochev, S. Moe, K. Peterson, and D. Ridzal, A conservative, optimization-based semi-
lagrangian spectral element method for passive tracer transport.

[3] P. Bochev and D. Ridzal, Additive operator decomposition and optimization–based reconnection with
applications, in Large-Scale Scientific Computing, Springer, 2010, pp. 645–652.

[4] P. Bochev, D. Ridzal, and K. Peterson, Optimization-based remap and transport: A divide and
conquer strategy for feature-preserving discretizations, Journal of Computational Physics, 257
(2014), pp. 1113–1139.

[5] P. Bochev, D. Ridzal, G. Scovazzi, and M. Shashkov, Constrained-optimization based data trans-
fer, in Flux-Corrected Transport, Springer, 2012, pp. 345–398.

[6] P. Bochev, D. Ridzal, and J. Young, Optimization–based modeling with applications to transport:
Part 1. abstract formulation, in Large-Scale Scientific Computing, Springer, 2012, pp. 63–71.

[7] P. B. Bochev and D. Ridzal, An optimization-based approach for the design of pde solution algo-
rithms, SIAM Journal on Numerical Analysis, 47 (2009), pp. 3938–3955.

[8] O. Guba, M. Taylor, and A. St-Cyr, Optimization-based limiters for the spectral element method,
Journal of Computational Physics, 267 (2014), pp. 176–195.

[9] R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow, SIAM
Journal on Numerical Analysis, 33 (1996), pp. 627–665.

[10] R. Liska, M. Shashkov, P. Váchal, and B. Wendroff, Optimization-based synchronized
flux-corrected conservative interpolation (remapping) of mass and momentum for arbitrary
Lagrangian-Eulerian methods, J. Comput. Phys., 229 (2010), pp. 1467–1497.

[11] J. A. Rossmanith and D. C. Seal, A positivity-preserving high-order semi-lagrangian discontinuous
galerkin scheme for the vlasov–poisson equations, Journal of Computational Physics, 230 (2011),
pp. 6203–6232.

CCR Summer Proceedings 2015 145

A MODIFICATION TO THE REMAPPING OF GAUSS-LOBATTO NODES
TO THE CUBED SPHERE

MIRANDA R. MUNDT† , MARK B. BOSLOUGH‡ , MARK A. TAYLOR§ , AND ERIKA L.

ROESLER¶

Abstract. The implementation of climate models is essential to studying the changes in our world. A
crucial piece of this model is the dual grid, needed for use of the High-Order Methods Modeling Environment
(HOMME). This paper details the efforts to create a more accurate dual grid, and then analyzes the efficiency
of said dual grid when used with multiple remapping algorithms.

1. Introduction. Atmosphere, ocean, and land surface models require detailed and
specific methods. One of the essential pieces of HOMME (High-Order Methods Modeling
Environment) is the dual grid, a mesh which contributes to the conservation of water in
climate simulations. The successful creation and implementation of this grid has been a
focus point of research, as adequate dual grids improve the conservation1 of flux fields, so
as to preserve energy and water when interpolating between meshes, for example.

Definition 1. A grid in this context is defined as a pattern of lines on the sphere,
such as a latitude-longitude split of the globe.

Definition 2. A map is defined as a mathematical function with a specified structure.

Definition 3. Remapping is the process of applying a mathematical function to
existing data to interpolate the information from one grid type (i.e., cubed-sphere) to another
grid type (i.e., latitude-longitude).

In this paper, we detail the efforts to create a satisfactory dual grid. Section 2 describes
our first step in achieving this goal, which was to alter the existing mathematical map by
[1] to adjust for both global and local surface area discrepancies which arise from too low
accuracy. Section 3 details our work on creation of the dual grid, including information
on the iterative method conceived and the results produced. Finally, Section 4 details our
analysis of the resulting dual grid using utilities provided by two services: those supplied
by the Earth System Modeling Framework (ESMF), a well-established open-source software
package2, and TempestRemap, a new software package by Paul Ullrich3 of the University
of California, Davis, whose development is ongoing.

2. Mapping. There are multiple mesh types available on which to conduct climate
simulations, such as latitude-longitude, cubed-sphere, and geodesic. Of these three meshes,
we will work with the cubed sphere (Figure 2.1), for which computations are made using the
spectral element method[4], which requires quadrilaterals with no hanging nodes (a node
which is not a vertex of every neighboring quadrilateral)[6].

The cubed-sphere grid is generated by mapping a point on the unit square or reference
element, where US = {(x1, x2) : −1 ≤ x1, x2 ≤ 1}, S = {(λ, θ) : −π2 ≤ θ ≤ π

2 , 0 ≤ λ ≤
2π}, into latitude-longitude coordinates on the unit sphere, with an intermediate mapping
through the corresponding Cartesian coordinates. In a previous work, this map, denoted
r(x) : U 7→ S, was developed for each quadrilateral element Ωm on the surface of the unit

†University of California, Los Angeles, mundt@ucla.edu
‡Multiphysics Applications, Sandia National Laboratories, mbboslo@sandia.gov
§Multiphysics Applications, Sandia National Laboratories, mataylo@sandia.gov
¶Geophysics and Atmospheric Sciences, Sandia National Laboratories, elroesl@sandia.gov
1See [2] for a mathematical explanation of conservation.
2Information and source code at https://www.earthsystemcog.org/projects/esmf/
3Information and source code at https://github.com/ClimateGlobalChange/tempestremap

146 Remapping to the Cubed Sphere

Fig. 2.1: Cubed-Sphere Mesh: 600 elements, 9° Resolution

sphere, where {c1, c2, c3, c4} is the set of four Cartesian coordinate vectors of the vertices
of Ωm. The map is as follows ([1]):

r(x) =
r̃

‖r̃‖2 (2.1)

where

r̃ =
1
4

[
(1− x1)(1− x2)c1 + (1 + x1)(1− x2)c2 + (1 + x1)(1 + x2)c3 + (1− x1)(1 + x2)c4

]
.

2.1. Error Analysis. We are interested in the level of distortion and error that was
present in this mapping. To investigate this, we looked closely at each individual quadrilat-
eral’s surface area and see precisely how much it varied from our expected surface area. The
exact surface area of each element was calculated using l’Huiller’s formula for the surface
area of a spherical triangle ([8]):

Am = ER2

E = 4 arctan

√
tan

s

2
tan

s− a
2

tan
s− b

2
tan

s− c
2

s =
a+ b+ c

2

(2.2)

where a, b, c are side lengths and R = 1 since our sphere is unit. To use this formula,
we arbitrarily divide each quadrilateral into two triangles. Ultimately, we have two values
E1, E2 which correspond to two triangular areas, and we sum these areas to get the actual
area of each quadrilateral element Ωm.

The equation for our approximated area of each quadrilateral can be found using infor-
mation from equation (2.1):

A =
4∑
j=1

4∑
i=1

det(D(xi, xj))wiwj (2.3)

where D(xi, xj) is the derivative matrix of r(xi, xj) and (xi, xj) are Gauss-Lobatto nodes
with associated weights wi, wj . The difference between the results of equations (2.2) and

(2.3) is the error Em =
∣∣∣A−AmAm

∣∣∣ present in the mesh’s local surface area.

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 147

One of the goals of our analysis was to reduce the error which occurs in coarse regions
of variable meshes to below 10−12, which was as high as order 10−9 for some quadrilaterals
on our test mesh, by adjusting our map to locally correct any surface area error for each
individual quadrilateral. In theory, if we corrected each quadrilateral individually, this
would, in turn, correct for errors in the total surface area. We detail this effort in the
following subsection.

2.2. Method. To start, we edit our current map r(x) : U 7→ S (equation (2.1)). Our
goal was to create a map which would keep the original values of r(x) : U 7→ S whenever
x1 = ±1 or x2 = ±1, with the intent to maintain continuity across edges, and would
adjust the area of each individual quadrilateral on the unit sphere to match its precise area,
calculated exactly using l’Huiller’s formula (2.2). To do this, we would need to incorporate
an adjustment term ε per quadrilateral, which would correct the individual area errors.

We use bisection and interpolation methods in order to find the most effective ε for each
quadrilateral. We compose the original map with a new translation map b(x; ε) : R2x2 7→
R2x2, such that along the edges, b(x; ε) = (x1, x2) to maintain the continuity constraint.
This composition map would look like r2 = r(b(x; ε)), which has a derivative matrix of the
form dr2

dx = D(b(x; ε)) dbdx (x; ε), where D is defined as in equation (2.3).We chose b of the
form:

b(x; ε) = (x1 − ε(1− x2
1)(1− x2

2), x2 − ε(1− x2
1)(1− x2

2)). (2.4)

This map fit the required constaints perfectly. It would also translate a point from the
unit square into another point on the unit square for small enough epsilon, which . We then
used this to create our new r2(x) map, which would depend on x1, x2, r, and ε. We also
added another piece to this map, an adjustment constant α to correct for any error in the
total area of the sphere from the original r(x) : U 7→ S map. That is:

α =

√
4π
A

where A is defined as in equation (2.3). Putting it all together, our composition map became:

r2 = αr(b(x; ε)). (2.5)

In order to solve for the unknown constant ε, we use MATLAB’s4 built-in function
fzero on each quadrilateral. The function fzero works following the command
x = fzero(fun,x0), which tries to find x such that fun(x) = 0 using x0 as an initial
guess.

Using this tool, we were able to combine all of the parts of the map which relied upon
ε in order to find values which made the relative error Em =

∣∣∣A−AmAm

∣∣∣ equal to zero. The
issue now, though, was that some of the values of ε were simply too large. For example, in
our test data file5, one quadrilateral had an ε value of -1.44. Physically, this would mean
that b(x) was mapping a point from the unit square to a point outside of the unit square,
which violates one of the requirements imposed upon b(x).

Upon further analysis, the reason for this issue was revealed. As seen in Figure 2.2, the
original choice for b(x) was not a monotone function of ε. In fact, no matter the choice of
ε, it was only possible to make the surface area of each quadrilateral larger, which meant
that those quadrilaterals with a surface area which was approximated as greater than the

4MATLAB version 2012a.
5A plot of this is shown in Figure 2.1.

148 Remapping to the Cubed Sphere

exact value could only get larger and thus further away from the exact value. This resulted
in inaccurate, and relatively substantial, ε values.

We can see from Figures 2.2(a), (b), which correspond to the mapping from equation
(2.4), that with a positive and a negative value for ε, the surface is still being “stretched.”
Alternatively, we can see in Figures 2.2(c), (d), that with a different mapping, we are able
to get a surface which both shrinks and grows, depending on the choice for ε. The mapping
used for the second figure is:

b(x) = (x1 − εx1(1− x2
1)(1− x2

2), x2 − εx2(1− x2
1)(1− x2

2)). (2.6)

Fig. 2.2: Map Comparison: (a) Original map, ε = 0.3; (b) Original map, ε = −0.3; (c)
Modified map, ε = 0.3; (d) Modified map, ε = −0.3

Here not only does this map allow for “shrinks” and “stretches”, but it also follows
the continuity guidelines for the edges. That is, the edges stay the same while the internal
points move as necessary to adjust surface area. This map, unlike that in equation (2.4),
is monotonic in ε, meaning that we are able to get both larger and smaller surface areas as
needed. In fact, using the ε values generated for our test file, the error per each quadrilateral
was either reduced to order 10−17 or vanished completely while ε was sufficiently small -
i.e., never greater order than 10−3. Thus, we could locally correct for surface area errors,
meaning that our mapping from the cube to the sphere was improved greatly.

3. Dual Grid. Having established a more effective mapping method, we then moved
on to the task of generating adequate dual grids for use in HOMME. An adequate dual

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 149

grid must conform with several guidelines: (1) each polygon of the dual grid must contain
exactly one Gauss-Lobatto node; (2) the surface area of each polygon must equal the weight
associated with the contained Gauss-Lobatto node, to a specified order of accuracy.

3.1. Method. In order to create the dual grid, we produced an iterative method. This
method, coded and implemented using MATLAB, changes the surface area of all polygons
simultaneously by a slight amount with each iteration in two iterative stages. In an initial-
ization stage, the parameters for the iteration are defined (see Table 3.1). As we can see
from the table, there are two sub-utilities available for use in this code: addhexagons and
addchevrons.

Table 3.1: Initialization Variables

handle ‘.g’ Grid File Name
n n2 Gauss-Lobatto Nodes per Quadrilateral
TOL Error Tolerance
h Starting Step Size
eps Epsilon for Approximating Derivative
chevron Chevron Utility: 1 = On, 0 = Off
hexagon Hexagon Utility: 1 = On, 0 = Off

The first sub-utility only affects corner polygons, which originally start as triangles.
This utility changes these triangles into hexagons by splitting each singular point into two
points and shifting the points equidistantly along the adjacent edges, as shown in Figure
3.1(a).

The second sub-utility works by isolating all polygons which exist partially in exactly
two quadrilaterals from the original mesh. This happens only along quadrilateral edges of
the original mesh. Once these polygons have been isolated, the utility then identifies the
polygons which share the same edge - i.e., are next to each other. To this shared edge,
the utility simply adds a point in the middle. This action, which turns the polygons into
chevrons, allows an extra degree of freedom. See Figure 3.1(b). Because this utility requires
there to be at least two neighboring polygons which share an edge, however, it must be
turned off when n = 3.

In the first stage of iteration, we implement Euler’s method to travel slightly in the
direction of steepest descent for each point. For this stage, we use an adaptive step size h

which increases each iteration that the l2 error, calculated l2 =
√

1
2Σi

ε2i
nuniq where εi is the

error per ith element and nuniq is the number of unique elements, is less than the iteration
before. If the l2 error is larger than the previous iteration, h is decreased until l2 once again
declines. After the corners of the polygons are all moved, we must then normalize the new
locations to make sure that they are still located upon the sphere. New surface areas are
calculated and replace the old values. Then, using the new surface areas, we compute errors.

This repeats until the maximum absolute value of the errors dips below a hard-coded
tolerance NTOL = 10−5, at which point the second stage begins. In the second stage of
iteration, in place of Euler’s method, we use Newton’s method to iteratively shift the corners
to minimize the error. For this stage we define a new sparse matrix at every iteration and
fill in 2nd order accurate derivatives of each point at specified locations. Then we use the
built-in MATLAB function x = lsqr(A,B,TOL,MAXIT), which attempts to solve the
system of linear equations Ax = B where A is an mxn matrix, B is a column vector, TOL is
the desired convergence tolerance, and MAXIT is the max number of allowed iterations. We

150 Remapping to the Cubed Sphere

(a) AddHexagon: (i) Step 1 - Find triangles/corner polygons; (ii) Step 2 - Split each
point into two distinct points; (iii) Step 3 - Move points equidistantly along adjacent
edges

(b) AddChevrons: (i) Step 1 - Find polygons partially contained in exactly
two original quadrilaterals; (ii) Step 2 - Isolate the shared edge between
polygons; (iii) Step 3 - Insert a single point on the shared edge

Fig. 3.1: Sub-utility Process

then shift each point by calculating:

xyzcorners = xyzcorners - lsqr(dfdx, error, TOL, MAXIT) (3.1)

where xyzcorners is the column vector of current corner locations ((x, y, z) Cartesian
coordinates), dfdx is the sparse matrix filled with derivative values at each corner point,
and error is the column vector of area error values for every polygon. The values TOL and
MAXIT are hard-coded as the default MATLAB value 10−6 and 5000, respectively.

Euler’s method runs first in order to reduce the error to a value low enough such that
Newton’s method can effectively converge the system in few iterations. We determined
heuristically that the highest the error can be is 10−5, as mentioned above, in order to work
with all types of grids. For even the grids with the finest meshes, no more than 6 Newton’s
iterations were needed in order to achieve convergence. A check has been added to the code
which will terminate the process should the number of Newton’s iterations exceed 10. See
Table 3.2 for a pseudocode of the algorithm.

3.2. Results. The results of this iterative method are extremely successful. Though
the routine is relatively slow, taking roughly a day for the most refined grids attempted,
the results exactly fit the criteria. We hoped that the method could reach a tolerance level
TOL of 10−12; we were glad to find, however, that it can actually achieve a TOL of 10−15.
Upon attempting any lower tolerance, the method stalls in the second stage of iteration and
bounces back and forth between numbers barely over 10−16.

Our resulting dual grids for a 22.5° uniform mesh are displayed in Figures 3.2(a) and

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 151

Table 3.2: Iterative Steps

1 while max(abs(errort)) > TOL %Break statement
2 initialize temporary areas
3 if max(abs(errort)) > NTOL

%Euler’s Method using Steepest Descent
4 initialize force matrix F
5 for all unique Gauss-Lobatto Nodes
6 calculate steepest descent F for corners
7 and sum F for repeated corners
8 end
9 corners = corners + h*F
10 normalize points back to surface of sphere
11 calculate new surface area and new error
12 calculate l2error
13 if old l2error > new l2error
14 h = 1.01*h
15 else
16 h = 0.3*h
17 end
18 else

%Newton’s Method using Least Squares
19 initialize sparse matrix
20 for all unique Gauss-Lobatto Nodes
21 fill sparse matrix with

2nd order accurate derivatives
22 end
23 corners = corners - lsqr(sparse matrix, error)
24 normalize points back to surface of sphere
25 calculate new surface area and new error
26 if Newton Reps > 10
27 error: too many Newton iterations
28 end
29 end
30 plot the resulting dual grid
31 end

3.2(b). Both grids were generated using the new mapping described in Section 2, utilizing
the MATLAB mapping method from the section above. The grid in Figure 3.2(a) has the
chevron and hexagon utilities deactivated (chevron = hexagon = 0), while the grid in
Figure 3.2(b) has the sub-utilities activated (chevron = hexagon = 1).

These grids also present the benefit of activating the sub-utilities. To create Figure
3.2(a), the run needed 6318 Euler iterations and 3 Newton iterations in order to converge to
a tolerance level TOL = 10−15, which took a real runtime of 2 hours 46 minutes. To create
Figure 3.2(b), however, the run only needed 89 Euler iterations and 3 Newton iterations to
converge to the same TOL, which took a real runtime total of 2 minutes 50 seconds, only
2% of the time without chevrons and hexagons. Scaled to a realistic mesh refinement (1° or
finer), these utilities can save days or weeks of computation time.

152 Remapping to the Cubed Sphere

(a) Chevron and Hexagon Utilities Off (b) Chevron and Hexagon Utilities On

Fig. 3.2: Comparison of Sub-Utility Effect on Dual Grids

The iterative method works for more than only uniform meshes, though. According to
[9], the cost of running a simulation using a locally refined mesh as opposed to a globally
refined mesh can be as much as 15 to 20 times less expensive computationally; therefore,
it was vital that our method be able to create dual grids for these fundamentally essential
mesh types. An example mesh can be seen in Figure 3.3(a). This grid, called CONUS, is a
1° globally refined mesh with a local refinement of 1/4th° over the United States. Its dual
grid is shown in Figure 3.3(b).

(a) CONUS: Original Mesh (b) Dual grid of CONUS, zoomed in
over Florida

Fig. 3.3: CONUS Mesh and Resulting Dual Grid

4. Analysis.

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 153

4.1. Analytic Test Fields. Following the idealized study by [7], we begin our analysis
with two test fields:

Y 16
32 = 2 + sin16 (2θ) cos (16λ) (4.1)

VX = 1− tanh
[ρ′
d

sin
(
λ′ − ω′t)]. (4.2)

The first field (4.1) is a high frequency wave similar to a spherical harmonic of order
32 with azimuthal wavenumber 16. The second field (4.2) is a dual stationary vortex ([5]),
where ρ′ = r0 cos θ′ with angular velocity

ω′(θ′) =

{
0 if ρ′ = 0
Vt
ρ′ if ρ′ 6= 0

and normalized tangential velocity

Vt =
3
√

3
2

sech2ρ′ tanh ρ′.

In these equations, (λ′, θ′) refers to a rotated spherical coordinate system with a pole located
at (λ0, θ0). Following [7] and [3], we define r0 = 3, d = 5, and t = 6. We differ, however,
in that we define (λ0, θ0) = (0, 90) in order to rotate the vortex field over the fine local
resolution of the CONUS mesh.

We have chosen these fields for one simple reason: the ability to compare our test data
to the true values. We first calculate these fields on our chosen test grid, CONUS, seen
in Figure 3.3(a). We then interpolate these fields using both ESMF algorithms and Tem-
pestRemap algorithms to a 1° latitude-longitude grid using four mapping methods: ESMF’s
conservative routine; ESMF’s bilinear routine; TempestRemap’s conservative method; and
TempestRemap’s conservative and monotone method. For the TempestRemap rountines,
we utilize the --in meta option, which allows the user to specify a metadata file – i.e., the
dual grid created in Section 3.

We see from the highlighted rows in Tables 4.1 and 4.2 that while ESMF’s conservative
routine maintains the highest conservation between mappings, TempestRemap’s conserva-
tive routine actually produces the lowest l2 and l∞ errors. Between the routines which are
both conservative and monotone (ESMF conservative and TempestRemap conservative plus
monotone), TempestRemap’s algorithm yields superior results.

Table 4.1: Y 16
32 : CONUS → 1° Lat-Lon

Map Rel. Cons. Err. Rel. l2 Err. Rel. l∞ Err.
ESMF Cons -8.8817841994e-16 0.0028276477 0.0350443549
ESMF Bilin 2.4314462348e-06 9.7528987551e-04 0.0677483902

Tempest Cons 6.0762506154e-13 2.5542887944e-04 0.0015392922
Tempest Cons&Mono 6.0762506154e-13 0.0020480475 0.0256390019

These results can also be verified in Figures 4.1(a) – 4.2(b). Figures 4.1(a) and 4.2(a)
show the reference solutions on a slightly finer than 1/8th° latitude-longitude mesh using
ESMF’s bilinear mapping method6. Figures 4.1(b) and 4.2(b) show the difference between
the true values and the interpolated test data. As we can see for both figures, globally the
most accurate method is TempestRemap’s conservative routine.

6Y 16
32 and VX were remapped to the finer latitude-longitude mesh in order to maintain consistency with

results from the surface pressure and precipitation fields.

154 Remapping to the Cubed Sphere

Table 4.2: VX : CONUS → 1° Lat-Lon

Map Rel. Cons. Err. Rel. l2 Err. Rel. l∞ Err.
ESMF Cons -6.6613381450e-16 0.0026696437 0.0143002086
ESMF Bilin -3.0253601009e-06 8.6118793680e-04 0.0087934835

Tempest Cons 6.1572968920e-13 3.6147702442e-04 0.0020496320
Tempest Cons&Mono 6.1550764460e-13 0.0017014020 0.0120947576

(a) Solution Plot (b) Difference from True/reference solution: (i)
ESMF Conservative routine; (ii) ESMF Bilinear rou-
tine; (iii) TempestRemap Conservative routine; (iv)
TempestRemap Conservative and Monotone routine

Fig. 4.1: Y 16
32 Plots

Looking specifically at Figure 4.2(b), though, we can see an example of an interesting
phenomenon. One of the commonplace issues with ESMF’s conservative routine is, when
interpolating to a high resolution mesh, the resulting data takes on a “blocky” appearance.
In Figure 4.2(b)(a), this is clearly apparent. Comparing to TempestRemap’s version of
conservative and monotone mapping (4.2(b)(d)), the blocky appearance is greatly reduced,
instead producing a more “smeared” appearance like those of 4.2(b)(b), (c). This constitutes
one of TempestRemap’s advertised improvements in action.

4.2. Real Test Fields. After completing the analysis on the analytic test functions,
we choose two real fields to analyze: surface pressure (PS) and precipitation (PRECT).
These fields, unlike the test fields [(4.1), (4.2)], have no “true” values for a 1° latitude-
longitude mesh against which we can compare. To handle this difficulty, we interpolate
original CONUS data using ESMF’s bilinear remapping routine to a slightly smaller than
1/8th latitude-longitude grid. Since bilinear interpolation converges with a fine enough
mesh, we consider this result to be the “true” data, which we call the reference data. We
then follow a similar procedure to the analytic test fields. We interpolate PS and PRECT to
a 1° latitude-longitude grid using the four mapping methods: ESMF’s conservative routine;
ESMF’s bilinear routine; TempestRemap’s conservative method, with --in meta feature
activated; and TempestRemap’s conservative and monotone method, with --in meta fea-
ture activated. In order to compare with the reference data, we then interpolate the four
results to the same slightly smaller than 1/8th latitude-longitude grid using ESMF’s bilinear
routine.

Error results for PS and PRECT can be seen in Tables 4.3 and 4.4, respectively. We

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 155

(a) Solution Plot (b) Difference from True/reference solution: (i)
ESMF Conservative routine; (ii) ESMF Bilinear rou-
tine; (iii) TempestRemap Conservative routine; (iv)
TempestRemap Conservative and Monotone routine

Fig. 4.2: VX Plots

see that, in both cases, ESMF’s bilinear algorithm presents the lowest l2 errors, though
TempestRemap Conservative closely rivals these results, whereas TempestRemap routines
yield the lowest l∞ errors, highlighted in the tables. Again looking only at routines which
are both conservative and monotone, TempestRemap produces the superior numbers.

Table 4.3: PS: CONUS → 1° Lat-Lon → 1\8° Lat-Lon

Map Relative l2 Error Relative l∞ Error
ESMF Conservative 0.002179606156281 0.054770216137821

ESMF Bilinear 0.001268259444092 0.039944410943513
Tempest Conservative 0.001273935767266 0.030386655114516

Tempest Cons. and Monotone 0.002004802651698 0.042339203632743

Table 4.4: PRECT: CONUS → 1° Lat-Lon → 1\8° Lat-Lon

Map Relative l2 Error Relative l∞ Error
ESMF Conservative 0.138770011785557 0.352990491847132

ESMF Bilinear 0.110058601199370 0.353902362293653
Tempest Conservative 0.116629502370971 0.353456376203758

Tempest Cons. and Monotone 0.149044024540546 0.350990170744384

For these fields, we chose to create figures on a global and a local scale to mimic the
levels of refinement of the CONUS mesh. For the PS field, Figures 4.3(a) and 4.4(a) show the
original field and the difference from the reference solution, respectively, while Figures 4.3(b)
and 4.4(b) show the localized field and difference from reference solution, respectively. We
see that, much as expected, the least color variation occurs over the United States, where
the CONUS mesh is more refined, a phenomenon that can also be easily seen in Figure
4.1(b) for Y 16

32 .
For the PRECT field, parallel to the PS field, Figures 4.5(a) and 4.6(a) show the original

156 Remapping to the Cubed Sphere

field and difference from reference solution, respectively. Figures 4.5(b) and 4.6(b) show the
localized PRECT field and difference from the reference solution. The same smaller color
variation phenomenon is present in these images, too, directly over the United States.

We find, as with the analytic test fields, that we can see the same “blocky” phenomenon
in the ESMF conservative mapping routines (in Figures 4.4(a), 4.4(b), 4.6(a), and 4.6(b)).
Again, we do not see any indication of the ESMF bilinear mapping issue (extraneous noise
when remapping to low resolution).

(a) Global Solution (b) Solution over US

Fig. 4.3: Surface Pressure PS Solution Plots

(a) Difference from True/reference solution: (i)
ESMF Conservative routine; (ii) ESMF Bilinear rou-
tine; (iii) TempestRemap Conservative routine; (iv)
TempestRemap Conservative and Monotone routine

(b) Difference from True/reference solution:
(i) ESMF Conservative routine; (ii) ESMF Bi-
linear routine; (iii) TempestRemap Conserva-
tive routine; (iv) TempestRemap Conservative
and Monotone routine

Fig. 4.4: Surface Pressure PS Difference Plots

M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler 157

(a) Global Solution (b) Solution over US

Fig. 4.5: Precipitation PRECT Solution Plots

(a) Difference from True/reference solution: (i)
ESMF Conservative routine; (ii) ESMF Bilinear rou-
tine; (iii) TempestRemap Conservative routine; (iv)
TempestRemap Conservative and Monotone routine

(b) Difference from True/reference solution:
(i) ESMF Conservative routine; (ii) ESMF Bi-
linear routine; (iii) TempestRemap Conserva-
tive routine; (iv) TempestRemap Conservative
and Monotone routine

Fig. 4.6: Precipitation PRECT Difference Plots

5. Conclusion. Several conclusions arose during this study. First and foremost, we
learned that adding extra degrees of freedom to the dual grid problem, by way of the
sub-utilities AddChevrons and AddHexagons, we achieved a significant speedup in con-
vergence. Because these dual grids are essential to HOMME, making them as accurate
as possible is crucial - in addition to creating them in a reasonable amount of time. The
proposed method has been shown to work for various test cases and produces good quality
dual grids.

Our second conclusion is in reference to the tested remapping algorithms. We find
that, for those algorithms which are required to be both conservative and monotone, Tem-
pestRemap bests ESMF. It both reduces error calculations and solves two well-recorded
ESMF issues: blockiness when mapping to high resolution grids using the conservative algo-
rithm and noisy data when mapping to low resolution using the bilinear algorithm. Though
still in development, it presents exciting improvements to our remapping utilities.

REFERENCES

158 Remapping to the Cubed Sphere

[1] O. Guba, M. A. Taylor, P. A. Ullrich, J. R. Overfelt, and M. N. Levy, The spectral element
method on variable resolution grids: Evaluating grid sensitivity and resolution-aware numerical
viscosity, Geoscience Model Development Discussion, Under Review (2014), pp. 1–27.

[2] P. W. Jones, First- and second-order conservative remapping schemes for grids in spherical coordi-
nates, Monthly Weather Review, 127 (1999), pp. 2204–2210.

[3] P. H. Lauritzen and R. D. Nair, Monotone and conservative cascade remapping between spherical
grids (CaRS): Regular latitude-longitude and cubed-sphere grids, Monthly Weather Review, 136
(2007), pp. 1416–1432.

[4] M. N. Levy, J. R. Overfelt, and M. A. Taylor, A variable resolution spectral element dynamical
core in community atmosphere model, Tech. Rep. SAND: 2013–0697J, Sandia National Laboratories,
2013.

[5] R. D. Nair and B. Machenhauer, The mass-conservative cell-integrated semi-lagrandian advection
scheme on the sphere, Monthly Weather Review, 130 (2002), pp. 649–667.

[6] C. Ronchi, R. Iacono, and P. S. Paolucci, The ’cubed-sphere’: A new method for the solution of
partial differential equations in spherical geometry, Journal of Computational Physics, 124 (1996),
pp. 93–114.

[7] P. A. Ullrich and M. A. Taylor, Arbitrary-order conservative and consistent remapping and a theory
of linear maps, part 1, 2014. In process.

[8] E. Williams, Aviation formulary. http://williams.best.vwh.net/avform.htm, 2011.
[9] C. M. Zarzycki, C. Jablonowski, and M. A. Taylor, Using variable resolution meshes to model trop-

ical cyclones in the community atmosphere model, Monthly Weather Review, 142 (2014), pp. 1221–
1239.

http://williams.best.vwh.net/avform.htm

CCR Summer Proceedings 2015 159

CROSS PLATFORM FINE GRAINED ILU AND ILDL FACTORIZATIONS
USING KOKKOS

AFTAB Y. PATEL∗, ERIK G. BOMAN† , SIVA RAJAMANICKAM ‡ , AND EDMOND CHOW§

Abstract. In this paper we describe the implementation of a fine grained asynchronous algorithm for
computing incomplete LU and LDL factorization preconditioners for sparse matrices. The algorithm is based
on a reformulation of the factorization problem as the iterative solution of a nonlinear system of equations
using an fixed point iterative method that has a high degree of inherent parallelism. The application of the
factorization as a preconditioner is also achieved by using a basic iterative method. The approach exhibits
significantly more parallelism than existing approaches and is particularly suited for many core architectures
such as GPUs and the Intel Xeon Phi. The paper also describes various new techniques for improving the
robustness of the algorithm thus enabling its effective application to real world problems.

1. Introduction. This paper is based on the fine grained parallel ILU algorithm de-
veloped in [6]. The algorithm is novel in the sense that it diverges significantly from the
classical approach to computing incomplete LU factorizations. The algorithm in [6] and
variations on it were implemented using the Kokkos framework [8]. The Kokkos frame-
work is a set of libraries and tools designed to enable the development of cross-platform
parallel software for many core architectures such as GPUs and CPUs, which traditionally
have required the development of different implementations. The implementation of the fine
grained ILU (known as FastILU from now on) using Kokkos was compiled for GPUs the
Intel Xeon Phi and CPUs and tested against existing implementations on those platforms.
Its performance was found to compare favorably to specialized code.

FastILU is an iterative method that constructs a sequence of approximations to the
exact incomplete LU factorization using a simple fixed point iteration performed on the
system of equations defining the ILU factorization. This reformulation results in a method
which displays a high degree of parallelism since each non-zero of the new approximation
in the sequence can be computed in parallel (in the limit of sufficiently many threads).
While this results in a loss of accuracy, and consequently, preconditioner quality, due to the
truncation of the iterations, an asynchronous update method such as those described in [9]
can be used to alleviate most of these problems as described in [6].

The end objective of this work was the development of a preconditioning technique
suitable for use in many core environments for the solution of real world problems. In its
initial form as developed in [6] the algorithm had various shortcomings. The most significant
was its failure on various problems arising from real world applications, due to numerical
overflow. A number of different approaches were attempted to stabilize the fine grained
algorithm without destroying its desirable properties. The first was the introduction of an
under-relaxation parameter, which controlled the addition of a certain amount of previous
values to the newly computed updates for the non-zeros of the incomplete factorization.
The second was the use of a continuation method for computing the initial guesses for the
iterative method with high levels of fill, using approximate solutions with lower levels of
fill. Also the algorithm’s convergence is sensitive to the assignment of computational work
to threads. The use of a good assignment can yield good convergence. These techniques
resulted in significant improvements in robustness. Most of the analysis in this paper will
focus on these additions to the method and the demonstration of their effectiveness. To the

∗School of Computational Science and Engineering, Georgia Institute of Technology, aypatel@gatech.edu
†Sandia National Laboratories, egboman@sandia.gov
‡Sandia National Laboratories, srajama@sandia.gov
§Advisor, School of Computational Science and Engineering, Georgia Institute of Technology,

echow@cc.gatech.edu

160 Fine Grained ILU

best of our knowledge these contributions are new and represent a significant step forward
in converting the experimental Fast-ILU algorithm into a tool ready for use by scientific
computing researchers.

In addition to these improvements we developed an incomplete LDL method based
on the original FastILU algorithm. This is particularly important in the context of GPU
implementation because it avoids an expensive square root operation which is required in
the IC method described in [6].

2. Background. The new parallel ILU algorithm is based on the sometimes-overlooked
property that

(LU)ij = aij , (i, j) ∈ S (2.1)

where (LU)ij denotes the (i, j) entry of the ILU factorization of the matrix with entries
aij . In other words, the factorization is exact on the sparsity pattern S. The original ILU
methods for finite-difference problems were interpreted this way [4, 14, 17] before they were
recognized as a form of Gaussian elimination, and long before they were called incomplete
factorizations [12].

Nowadays, an incomplete factorization is generally computed by a procedure analogous
to Gaussian elimination. However, any procedure that produces a factorization with the
above property is an incomplete factorization. The new fine-grained parallel algorithm
interprets an ILU factorization as, instead of a Gaussian elimination process, a problem
of computing unknowns lij and uij which are the entries of the ILU factorization, using
property (2.1) as constraints.

Formally, the unknowns to be computed are

lij , i > j, (i, j) ∈ S
uij , i ≤ j, (i, j) ∈ S.

We use the normalization that L has a unit diagonal, and thus the diagonal entries of L
do not need to be computed. Therefore, the total number of unknowns is |S|, the number of
elements in the sparsity pattern S. To determine these |S| unknowns, we use the constraints
(2.1) which can be written as

min(i,j)∑
k=1

likukj = aij , (i, j) ∈ S. (2.2)

Each constraint can be associated with an element of S, and therefore there are |S| con-
straints. Thus we have a problem of solving for |S| unknowns with |S| equations.

To be sure, these equations are nonlinear and there are more equations than the num-
ber of rows in A. However, there are several potential advantages to computing an ILU
factorization this way: 1) the equations can be solved in parallel with very fine-grained
parallelism, 2) the equations do not need to be solved very accurately to produce a good
ILU preconditioner, and 3) we often have a good initial guess for the solution.

We now discuss the parallel solution of the system of equations (2.2). Although these
equations are nonlinear, we can write an explicit formula for each unknown in terms of the
other unknowns. In particular, the equation corresponding to (i, j) can give an explicit
formula for lij (if i > j) or uij (if i ≤ j),

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 161

lij =
1
ujj

(
aij −

j−1∑
k=1

likukj

)
(2.3)

uij = aij −
i−1∑
k=1

likukj . (2.4)

The second of these equations does not need a divide by lii because lii = 1.
The above equations are in the form x = G(x), where x is a vector containing the

unknowns lij and uij . It is now natural to try to solve these equations via a fixed-point
iteration

x(k+1) = G(x(k)) (2.5)

with an initial guess x(0). Each component of the new iterate x(k+1) can be computed in
parallel.

There is a lot of structure in G. When the unknowns lij and uij are viewed as entries
of matrices L and U , the formula (2.3) or (2.4) for unknown (i, j) only depends on other
unknowns in row i of L to the left of j, and in column j of U above i. This is depicted in
figure 2.1 where the L and U factors are shown superimposed into one matrix. Thus, an
explicit procedure for solving the nonlinear equations exactly is to solve for the unknowns
using equations (2.3) and (2.4) in a specific order: unknowns in the first row of U are solved
(which depend on no other unknowns), followed by those in the first column of L; this
is followed by unknowns in the second row of U and the second column of L, etc. This
ordering could be called a “Gaussian elimination ordering,” since it is one of the orderings
in which the lij and uij are produced in Gaussian elimination. This ordering is just one
of many topological orderings of the unknowns that could be used, another one being the
natural “row-wise” ordering of the entries of A. To be clear, this ordering is not related to
the reordering of the rows and columns of the matrix A, which we seek to avoid.

Different ways of performing the fixed-point iteration (2.5) in parallel gives rise to
slightly different methods. If the components of x(k+1) are computed in parallel with only
“old” values x, then the method corresponds to the nonlinear Jacobi method [15]. At the
other extreme, if the components of x(k+1) are computed in sequence with the latest values
of x, then we have the nonlinear Gauss-Seidel method. If this latter method visits the
equations in Gaussian elimination order, then nonlinear Gauss-Seidel solves the equations
in a single sweep, and the solution process corresponds exactly to performing a conventional
ILU factorization. In practice, a parallel implementation may perform something in between
these two extremes.

If the equations are ordered in a Gaussian elimination ordering the numerical method we
have presented in this section converges in a finite number of iterations in exact arithmetic.
A proof of this fact is presented in [6]. It is important to note at this juncture that this
method may not converge due to numerical overflow in finite precision arithmetic, and the
numerical experiments in later sections will demonstrate this. Our exposition in this section
is necessarily brief, intended to give an overview of the method as the main focus of the
present work is its cross-platform implementation and the improvement of its numerical
stability, the reader should consult [6] for a more detailed development.

A question that remains is the application of the preconditioner that we have described
in this section. The application of an ILU or LDL factorization in each step of an iterative
method involves solve operations with the triangular factors. These solve operations present

162 Fine Grained ILU

(a) lij dependencies (b) uij dependencies

Fig. 2.1: Formula for unknown at (i, j) (dark square) depends on other unknowns left of
(i, j) in L and above (i, j) in U (shaded regions). Left figure shows dependence for a lower
triangular unknown; Right figure shows dependence for an upper triangular unknown.

some of the same challenges to parallelization that are encountered in the standard technique
for constructing ILU factorizations. Thus while a parallel ILU algorithm is a nice thing to
have, any benefit obtained from a highly parallel factorization operation would be nullified
by poorly scalable triangular solves. In order to maintain a high degree of parallelism in the
application of the factorization as a preconditiner we can solve with the triangular factors
approximately using a fixed number of sweeps of a Jacobi iteration.

The Jacobi method is a basic iterative method based on the following matrix splitting

A = (A−D) +D; (2.6)

where D is the diagonal of the matrix A. Given an initial guess x0 Jacobi iteration generates
a sequence of approximations {x}∞0 to the solution of a linear system of equations Ax = b
according to the following update rule

xk+1 = (I −D−1A)xk +D−1b. (2.7)

The theory of basic iterative methods (of which class Jacobi iteration is a member)
assures us that this iteration will converge if ρ(I −D−1A)) < 1 [10]. ρ(.) being the spectral
radius of its argument. If A is triangular then D−1A is triangular and has a unit diagonal,
implying that (I−D−1A) is a triangular matrix with a zero diagonal, which in turn implies
that its spectral radius is zero. Thus, the Jacobi iteration converges for all triangular
matrices and is a viable method for the application of an incomplete factorization with
triangular factors. It is important to emphasize at this juncture that we are talking about
asymptotic convergence here or convergence as the iteration number k → ∞. Initially we
may have divergence, or morbidly slow convergence depending on the matrix A and its
eigenstructure.

3. Extensions and algorithms. It is easy to extend the numerical method outlined
in the previous section to one for an incomplete LDL factorization for a symmetric matrix.

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 163

We start with the system of equations,

(LDLT)ij = aij , (i, j) ∈ S. (3.1)

In the above D is a diagonal matrix. We can use (3.1) to generate the fixed point iteration
corresponding to the following equations for updating L and D,

lij =
1
dj

(
aij −

j−1∑
k=1

likdkljk

)
(3.2)

di = aii −
i−1∑
k=1

likdkljk. (3.3)

Note that di is the ith element on the diagonal of the diagonal matrix D. In contrast to the
incomplete cholesky method developed in [6] this technique avoids square roots and has the
potential to work for matrices that are indefinite.

The FastILU algorithm is presented in Algorithm 3 in pseudo-code. Each fixed-point
iteration updating all the unknowns is called a “sweep.”

Algorithm 3 Fine-Grained Parallel Incomplete Factorization
Set unknowns lij and uij to initial values
for sweep = 1, 2, . . . until convergence do

for (i, j) ∈ S in parallel do
if i > j then

lij =
(
aij −

∑j−1
k=1 likukj

)
/ujj

else
uij = aij −

∑i−1
k=1 likukj

The algorithm is parallelized across the elements of S. Given p compute threads, the
set S is partitioned into p parts, one for each thread. The threads run in parallel, updating
the components of the vector of unknowns, x, asynchronously. Thus the latest values of x
are used in the updates. The work associated with each unknown is unequal but is known
in advance (generally more work for larger i and j), and the load for each thread can be
balanced.

In an implementation of the parallel for loop across S in algorithm 3 we have found
experimentally that a distribution of iterations across threads where each thread iterates
through a sequence of consequetive non-zeros in S or “chunk” generally yields the best
convergence [6]. This would be expected to have a non-trivial impact on performance
depending on the platform. In particular such a distribution of work between threads would
be expected to perform poorly due to the lack of coalesced memory access. Our experimental
results will demonstrate the impact of this.

To develop an efficient implementation of Algorithm 3, it is essential that sparsity is
considered when computing (2.3) and (2.4). The inner products in these equations involve
rows of L and columns of U . Thus L should be stored in row-major order (using compressed
sparse row format, CSR) and U should be stored in column-major order (using compressed
sparse column format, CSC). An inner product with a row of L and a column of U involves
two sparse vectors, and this inner product should be computed utilizing their sparsity.

An additional optimization is to avoid the branch in Algorithm 3. This can be done
by dividing the set S into upper and lower triangular parts; threads are then dedicated to
either part.

164 Fine Grained ILU

When the matrix A is symmetric, the algorithm only needs to compute one of the
triangular factors. The incomplete LDLT algorithm that we described at the beginning of
the section is presented in algorithm 4.

Algorithm 4 Symmetric Fine-Grained Parallel Incomplete Factorization
Set unknowns uij to initial values
for sweep = 1, 2, . . . until convergence do

for (i, j) ∈ SU in parallel do
s = aij −

∑j−1
k=1 likdkljk

if i 6= j then
lij = s/dj

else
di = s

In the above algorithms, we assume that the sparsity patterns S are given. Patterns
corresponding to level-based ILU factorizations have proven to be effective for many types
of problems. Patterns for ILU(k) for k > 0, however, must be computed sequentially;
computing these patterns in parallel is an open problem. Many circumstances ameliorate
the above problem. When solving a sequence of problems with the same sparsity pattern,
the ILU pattern only needs to be computed once. Further, for problems on regular grids,
the pattern for ILU(k) is the structure of the product of L and U for ILU(k − 1), and thus
can be computed in parallel [16]. For irregular problems, this technique can be used as an
approximation to the desired sparsity pattern.

Any fixed point iteration of the form (2.5) requires an initial guess to start. It is always
one’s hope that the algorithm be insensitive to the nature of this initial guess. In the present
case unfortunately, this is not true. The iterative method, algorithm 3, is quite sensitive
to the initial guess, as explained in [6]. One obvious initial guess is the upper and lower
triangular parts of the matrix A. Experimentally it was observed that this was a poor
choice. The problems with this choice of initial guess went away if the factorization method
was applied to a scaled matrix Ã obtained by scaling A to give it a unit diagonal (see [6]).
While this is sufficient for constructing factorizations with low levels of fill, it yields to slow
convergence to an effective factorization at higher levels of fill. A starting procedure that
was found to be effective for high levels of fill, was to use the result of running the algorithm
on a lower level of fill as a initial guess for the higher level factorizations. This was found
to work well, as the experimental results will show.

At this point it is important to clarify the method of application of the preconditioner
since we use a diagonally scaled matrix as an initial guess. Consider the scaled matrix
DAD = Ã and a corresponding incomplete factorization Ã ≈ LU . Where L and U are
approximate solutions to the system of equations

(Ã− LU)S = 0 (3.4)

where S is the given sparsity pattern. Now,

(Ã− LU)S = 0 (3.5)
=⇒ (DAD − LU)S = 0 (3.6)

=⇒ (AD −D−1LU)S = 0 (3.7)
=⇒ (A−D−1LUD−1)S = 0. (3.8)

(3.9)

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 165

Note that the last two relationships in the above are only possible if D is a diagonal matrix.
Thus the preconditioner can be applied from one side by applying D−1LUD−1.

4. Stabilization techniques. The main focus of the present work was making an
implementation of FastILU that could be used by scientists to solve scientific computing
problems arising from applications. One major pre-requisite of any method that is ready
to be used in the real world is robustness. A user should ideally be able to use the method
as a black box without worrying about its failure. This goal is, in most cases, unattainable
however it is necessary to approximate it. In several places in the preceding sections there
are comments about overflow and break-down of the FastILU algorithm. Now that we have
completed an exposition of the algorithm itself we are ready to consider techniques that
can be used to overcome some of its failings. The primary goal of this section will be to
present several techniques that can be used to accomplish that goal without much effort.
The techniques’ effectiveness is explored in great detail in section 6.3.

A common technique used to stabilize the convergence of fixed point iteration is the
concept of underrelaxation or damping. This involves replacing the iteration (2.5) by

x(k+1) = (1− ω)x(k) + ωG(x(k)). (4.1)

where ω ∈ (0, 1]. It can easily be seen that the iterations (2.5) and (4.1) have the same
fixed points. Generally we expect that the convergence of the relaxed method will change
depending on the choice of ω. Usually there is an optimal value of ω that depends on the
function G that yields the best convergence. The jacobian of the right hand side of (4.1)
controls the transient convergence or the change in the approximate solution x(k) from one
iteration to the next. We can see immediately that this jacobian is nothing but ω times
the jacobian of the right hand side of (2.5) plus (1 − ω) times the appropriate identity.
This has two main effects. Firstly since the jacobian of the right hand side of (2.5) has a
spectral radius of 0 and is (strictly) lower triangular with a Gaussian Elimination ordering
(see [6]) it sets the spectral radius to 1− ω, which for ω ∈ (0, 1) is less than 1. Also, lower
values of ω make the jacobian more diagonally dominant. The appropriate choice of ω could
thus prevent the entries of the vector x(k+1) from being too large, which would in turn,
prevent numerical overflow. Determining a value of ω a-priori is hard without specialized
information about G (in the present context, this translates to information about A). The
general trend that we observed is that ω can be chosen to make the method converge on
most test cases. Generally as ω → 0 the rate of convergence slows down, making the cost
of computing an incomplete factorization go up.

Another technique in the context of ILU that is used to construct factorizations for
ill-conditioned factorizations is due to Manteuffel [11]. It involves scaling the off-diagonal
entries of the matrix A using a parameter to make the scaled matrix Ã more diagonally
dominant. Subsequently the incomplete factorization constructed from the scaled matrix is
used as a preconditioner for the original system. Once again this technique depends on a
parameter which must be chosen depending on the matrix A, and it is expected that as the
scaled and unscaled matrices depart significantly, the factorization of the scaled matrix will
be less and less effective as a preconditioner for the unscaled matrix.

As was explained in [6] the convergence of the nonlinear iteration for computing the
ILU factorization can be improved by controlling the assignment iterations of the parallel
for loop in 3 to available threads. Making each thread process a set of these iterations (a
chunk) in serial generally improves convergence if the non-zero indices in A are arranged in
a Gaussian Elimination ordering. This leads to problems on GPU platforms however due
to the lack of coalesced memory accesses when each thread processes a set of consecutive
non-zeros. On CPUs the performance remains the same (or improves in some cases).

166 Fine Grained ILU

It was found that in certain cases the Jacobi iteration used for the triangular solve
converged very slowly. One particular case is the matrix bcsstk24 which is a symmetric
and positive definite matrix with a very high condition number. In order to alleviate this
problem we found that replacing the Jacobi iteration with a block-Jacobi iteration with
small block sizes works quite well. Our experimental results will demonstrate this.

5. Kokkos implementation. Algorithms 3 and 4 were implemented using Kokkos.
The algorithms in their present form are particularly suited for implementation using Kokkos.
The bodies of the parallel for loops in the algorithms were implemented using functors, and
the parallel for loops themselves were realized as using the parallel for construct to deploy
those functors.

For the Jacobi iteration used for the triangular solves the updates were implemented
using functors that were also deployed using the parallel for construct. The solution with
the U factor produced by algorithm 3 was initially implemented to work with the CSC
format in which the algorithm computes it. It was found that due to the necessity of the
use of atomic operations this was considerably slower than the Jacobi iteration applied to L
which is stored in CSR. Due to this we decided to compute and store the transpose of the
U factor after its construction so that its application was efficient. It was clear from our
timings that the benefits of this would far outweigh the cost of the transpose operation.

It is to be noted that no architecture-specific optimizations were added to our Kokkos
implementation in order to test its default performance across architectures. It was found
to perform as well as other specific implementations for GPUs and MIC architectures.

For testing the solution of the linear systems we also developed an interface for the
new preconditioners to the Trilinos [2] preconditioning package called ifpack2. This was
then used with the Conjugate Gradient and GMRES solver routines in the Trilinos solver
package Belos.

6. Experimental results. We present the results of various experiments concerning
the performance and preconditioning quality of our new preconditioning technique. It is
to be noted that these results are generally a combination of the effect of the approximate
incomplete factorizations and the approximate triangular solves used to apply them. Unless
stated otherwise all the matrices were reordered using the RCM (Reverse Cuthill-McKee)
ordering. The test matrices we used are given in tables 6.1 and 6.2. They are matrices
arising from various application domains that are taken from the University of Florida
Sparse Matrix collection [7].

Matrix rows non-zeros

thermal2 1228045 8580313
af shell3 504855 17562051
ecology2 999999 4995991
apache2 715176 4817870
offshore 259789 4242673

G3 circuit 1585478 7660826
parabolic fem 525825 3674625

bcsstk24 3562 159910

Table 6.1: Symmetric and positive definite matrices from the UFL sparse matrix collection.

6.1. Test devices.
1. GPU: Tesla K20Xm capability 3.5, Total Global Memory: 5.625 G, Shared Memory

per Block: 48 K (Shannon).

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 167

Matrix rows non-zeros

chipcool0 20082 281150
venkat01 62424 1717792

atmosmodl 1489752 10319760
atmosmodd 1270432 8814880

FEM 3D thermal 2 147900 3489300
stomach 213360 3021648

Table 6.2: Non-symmetric matrices from the UFL sparse matrix collection.

2. CPU: AMD Opteron 6276 2.3 Ghz 8x8 thread configuration (Vesper).
3. MIC: Intel Xeon Phi (KNC) with 228 threads (4 threads per core).

6.2. Timing experiments. In this section we present timing results for the FastILU
method on different architectures. In order to provide a reference point we compared our
implementation of the algorithm with two previous implementations. The first being the
implementation in MAGMA [1] which is for GPUs. The details of this implementation can
be found in [5] [3]. The second is an internal code developed at Georgia Tech (called GT-
ILU), which was used for the experimental results in [6] and is for CPUs and Intel Xeon Phi
(MIC). All the experiments here were carried out for the full ILU algorithm.

Table 6.3 is a comparison between the factorization construction time of the MAGMA
implementation and our Kokkos implementation. tfilu are the times for the Kokkos imple-
mentation and tmagma are the times for MAGMA in seconds. The comparison was carried
out by setting the number of sweeps to be used as 5. We can immediately see that the per-
formance of the Kokkos implementation is comparable to the performance of the iterative
ILU implementation in MAGMA.

Matrix tmagma (s) tfilu (s) tfilu/tmagma
thermal2 0.045 0.045 1.00
af shell3 0.401 0.405 1.01
ecology2 0.011 0.012 1.09
apache2 0.015 0.016 1.06
offshore 0.070 0.070 1.00

G3 circuit 0.021 0.022 1.05
parabolic fem 0.019 0.019 1.00

Table 6.3: Timing comparisons of 5 sweeps of the full ILU between MAGMA and Kokkos
implementation on a GPU. We see that the performance is similar.

Table 6.4 is a comparison between the factorization construction time of GT-ILU and
our Kokkos implementation on the CPU device that we used for testing. We see immediately
that our implementation is faster.

Table 6.5 is a comparison between the factorization construction time of GT-ILU and
our Kokkos implementation on the MIC device that we used for testing. We see that the
performance of both implementations is comparable.

Table 6.6 is a scaling study on one of the test problems from the matrices that we
used for testing on a CPU. We see immediately that the Kokkos implementation scales
significantly better than GT-ILU, despite being slower on a single core.

Tables 6.7 and 6.8 show the timings for triangular solves between our implementation

168 Fine Grained ILU

Matrix tgtilu (s) tfilu (s) tgtilu/tfilu
thermal2 0.366 0.144 2.54
af shell3 0.429 0.228 1.87
ecology2 0.130 0.061 2.13
apache2 0.133 0.064 2.07
offshore 0.233 0.080 2.91

G3 circuit 0.205 0.143 1.43
parabolic fem 0.170 0.078 2.17

Table 6.4: Timing comparisons of 5 sweeps of the full ILU between old code and Kokkos
implementation on a CPU. Note that different compilers were used for the two versions.

Matrix tgtilu (s) tfilu (s) tfilu/tgtilu
thermal2 0.165 0.201 1.21
af shell3 0.545 0.882 1.61
ecology2 0.079 0.068 0.86
apache2 0.088 0.078 0.89
offshore 0.113 0.124 1.10

G3 circuit 0.126 0.131 1.04
parabolic fem 0.083 0.070 0.84

Table 6.5: Timing comparisons of 5 sweeps of the full ILU between old code and Kokkos
implementation on MIC with 228 threads.

and MAGMA on a GPU and our implementation on MIC. On a GPU the timings are
comparable. Comparing the times of the CSR solve (for L) vs the CSC solve (for U) we
immediately see that the CSR solve is up-to a factor of 4 faster on some cases due to the
lack of atomics. This is the main motivation for us to compute the transpose of U (which is
equivalent to converting it to CSR) after computing L and U. If we expect that U is going
to be applied many times in the course of the solution of a linear system, then the profits
from using a faster triangular solve far outweigh the cost of the transpose. For the MAGMA
GPU implementation we also timed the transpose operation which is a call to a CUSPARSE
library function [13] (the timings are given in the column with header tTmagma). We did not
include the timings for the tranpose in our FastILU code because we did not optimize this
operation.

In section 4 we claimed that increasing the chunk size for the nonlinear iterations to
construct the ILU factorization resulted in improved convergence but led to degraded per-
formance on GPU platforms. Figure 6.1 illustrates the performance impact of increasing
the chunk size on GPUs on the problem af shell3. We see that the lack of coalesced memory
accesses results in a significant performance degradation.

6.3. Convergence and preconditioning performance. In this section we present
various experimental results to demonstrate the convergence and preconditioning quality of
the new algorithm. These experiments will motivate our choice of stabilization methods
and the new initial guess (described in sections 3 4). The focus of our presentation in this
section will be a GPU platform since the convergence of the method degrades with increasing
number of threads and our GPU platform had a greater number of threads than the MIC
and CPU platforms (see [6] for a fairly detailed analysis of this fact). When we refer to the
preconditioner being used with a certain number of sweeps we are referring to the number

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 169

threads tgtilu (s) tfilu (s)

1 1.745 3.089
8 0.423 0.531
16 0.391 0.361
32 0.377 0.201
40 0.374 0.170
48 0.368 0.180
56 0.370 0.163
64 0.362 0.153

Table 6.6: Timing comparisons of 5 sweeps of the full ILU between old code and Kokkos
implementation on a CPU with varying numbers of cores. The matrix used is thermal2

Matrix tmagma (s) tTmagma tLfilu (s) tUfilu (s)

thermal2 0.0068 0.1011 0.0079 0.0249
af shell3 0.0172 0.1640 0.0193 0.0711
ecology2 0.0028 0.0588 0.0038 0.0056
apache2 0.0029 0.0560 0.0034 0.0067
offshore 0.0043 0.0412 0.0048 0.0169

G3 circuit 0.0045 0.0909 0.0061 0.0118
parabolic fem 0.0026 0.0422 0.0031 0.0081

Table 6.7: Comparisons of timings of triangular solves between MAGMA and the Kokkos
implementation on a GPU. Note that MAGMA transposes the matrix U after construction
so that all solves are CSR solves whereas the Kokkos implementation uses a CSR solve and
a CSC solve. The timings shown are for 5 iterations of Jacobi’s method applied to the
triangular factors of a level 0 factorization. Timings were averaged over 100 repetitions.
tTmagma is the time that MAGMA takes for computing the transpose of the U factor.

of sweeps being used for the factorization phase and the number of Jacobi iterations used
for application. These two numbers are assumed to be the same in the remainder of this
section. Also, we would like to point out that when we refer to the nonlinear residual we
are referring to the ILU residual ‖(A − LU)S‖F . Here (A)S is the pattern of A restricted
to the sparsity pattern S (i.e. the elements of A not in S are dropped).

Tables 6.9 and 6.10 present the number of CG iterations for the solution of various test
problems with the LDL preconditioner for various levels of fill. These results show that for
certain problems offshore and af shell3 the preconditioning technique fails. The failures in
these cases were observed to be due to a breakdown of the non-linear asynchronous iterations
for constructing the factorization due to numerical overflow.

In an attempt to stabilise the method and solve the problems with breakdown we
used under-relaxation with a parameter ω value of 0.5. This solved the problems with the
breakdowns observed with the unrelaxed method. These results are presented in tables 6.11
and 6.10 for 5 and 10 sweeps respectively. The variation of the l2 norm of the ILU residual
with the relaxation parameter and the variation of the number of CG (conjugate gradient)
iterations for offshore and af shell3 is presented in figures 6.2(a), 6.2(b), 6.3(a) and 6.3(b).
These figures highlight how ω affects the preconditioning technique. Lower values of omega
generally lead to slower, more stable convergence to an ILU factorization. In all cases the
preconditioned CG convergence tolerance used was 10−6.

Tables 6.11 and 6.12 reveal another problem that is present in tables 6.9 and 6.10 as

170 Fine Grained ILU

Matrix tLfilu (s) tUfilu (s)

thermal2 0.0292 0.0903
af shell3 0.0128 0.0719
ecology2 0.0168 0.0303
apache2 0.0139 0.0286
offshore 0.0088 0.0367

G3 circuit 0.0289 0.0587
parabolic fem 0.0121 0.0426

Table 6.8: Timings of the triangular solves for the Kokkos Implementation on MIC with
228 threads. Timings were averaged over 100 repetitions.

Fig. 6.1: Effect of increasing chunk size on factorization time on the GPU with 5 sweeps of
the asynchronous iterations. Test problem used is af shell

well. The increasing levels of fill do not give us better pre-conditioners if the number of
sweeps used is kept constant. This becomes very evident when we compare these results to
the results from using an exact ILU factorization, presented in table 6.17. In an attempt
to resolve this problem we implemented a continuation type technique for determining the
initial guess for higher levels of fill based on the factorization constructed using the technique
at lower levels of fill. The guess for a level k factorization was taken as the result of applying
three sweeps of the FastILU algorithm with level k − 1. This is recursively continued until
level 0. The effect of using such a procedure for constructing initial guesses on the matrix
apache2 is presented in tables 6.13 and 6.14. We see that the effect of using the new initial

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 171

Matrix 0 1 2 3 4 5

thermal2 1421 1110 1086 1145 1172 1178
af shell3 * * * * * *
ecology2 1807 1311 1271 1300 1344 1308
apache2 1001 768 815 818 827 847
offshore * * * * * *

G3 circuit 868 612 586 574 568 562
parabolic fem 425 467 421 474 480 527

Table 6.9: Test of the Iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 5 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the RCM ordering. No under-relaxation is used.

Matrix 0 1 2 3 4 5

thermal2 1312 869 692 635 630 626
af shell3 * * * * * *
ecology2 1708 1082 832 761 738 723
apache2 967 541 326 299 293 294
offshore 334 * * * * *

G3 circuit 860 524 426 360 312 254
parabolic fem 334 271 255 249 263 292

Table 6.10: Test of the Iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 10 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the RCM ordering. No under-relaxation is used.

guess procedure, compared to the initial technique using the upper and lower triangular
parts of the scaled matrix, is significant on this particular case. Tables 6.15 and 6.16 show
that this improvement is observed on all our test problems and is not specialized to the
case of apache2. Comparing tables 6.14 and 6.17 we observe another interesting fact. The
last row of 6.14 has uniformly lower iteration counts than the exact case. Indeed there is
nothing in the theory to prevent this from happening, and this suggests that the inexact
LDL method may, in come cases be a better preconditioner than an exact ILU factorization.

We now consider the effect of the Manteuffel shifting that we described in section 4. The
shifting parameter was varied in increments of 0.01 for the matrices af shell3 and offshore
which have convergence issues on GPUs. In order to isolate the effects of shifting we did not
use underrelaxation on these tests. The variation of the number of CG iterations with the
shifting parameter for these problems is presented in figures 6.4(a) and 6.4(b). We see that
fairly large shifting parameters ranging from 0.08 to 0.20 can be used without much decrease
in iterations resulting from the use of the incomplete factorization of the shifted matrix as
a preconditioner for the original system. The algorithm used to compute the factorization
used for the results in figures 6.4(a) and 6.4(b) was the LDL algorithm.

Next we consider a particularly ill-conditioned symmetric and positive definite matrix
bcsstk24 with a condition number κ(A) ∼ 1011. While the ILU factorization is found to
converge the jacobi iteration for the triangular solves converges very slowly.In order to
allevaite this problem we used a block jacobi triangular solve. Reasonably small block sizes
yield good results. Table 6.18 shows the effect of increasing the block size used for the
triangular solves from 5 to 20. The factorization used is a ILU level 1 factorization since the
ILU(0) factorization is a very poor preconditioner. The exact level 1 ILU factorization with

172 Fine Grained ILU

Matrix 0 1 2 3 4 5

thermal2 1489 1174 1156 1171 1192 1199
af shell3 1128 991 846 940 825 861
ecology2 1844 1444 1419 1440 1402 1464
apache2 1267 814 757 821 786 867
offshore 385 301 304 290 291 290

G3 circuit 958 702 644 635 624 615
parabolic fem 461 489 453 440 453 442

Table 6.11: Test of the Iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 5 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the RCM ordering. The under-relaxation parameter
used is ω = 0.5.

Matrix 0 1 2 3 4 5

thermal2 1343 924 840 815 819 811
af shell3 901 653 565 589 554 599
ecology2 1704 1103 925 910 893 922
apache2 1043 629 432 484 427 497
offshore 350 211 184 175 172 172

G3 circuit 904 607 512 471 431 410
parabolic fem 356 328 295 288 285 286

Table 6.12: Test of the Iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 10 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the RCM ordering. The under-relaxation parameter
used is ω = 0.5.

Sweeps 0 1 2 3 4 5

5 1271 818 758 821 786 865
10 1043 630 430 486 426 497
15 984 557 361 341 301 324
20 967 537 330 310 271 277
25 967 533 311 295 253 253

Table 6.13: Number of solver iterations with different numbers of sweeps and levels for
apache2 example re-ordered using RCM. The standard initial guess was used. The under-
relaxation parameter used was ω = 0.5.

Sweeps 0 1 2 3 4 5

5 1268 755 539 547 624 722
10 1043 592 370 290 267 267
15 984 545 334 250 203 191
20 967 536 306 235 188 168
25 967 533 317 230 181 159

Table 6.14: Number of solver iterations with different numbers of sweeps and levels for
apache2 example re-ordered using RCM. The continuation method for initial guesses was
used. The under-relaxation parameter used was ω = 0.5.

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 173

Matrix 0 1 2 3 4 5

thermal2 1489 1107 1047 1073 1088 1095
af shell3 1134 1012 975 969 953 966
ecology2 1841 1416 1282 1269 1303 1306
apache2 1265 756 539 547 625 721
offshore 384 288 279 308 373 364

G3 circuit 957 678 573 542 531 532
parabolic fem 467 436 405 429 455 474

Table 6.15: Test of the Iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 5 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the RCM ordering. The continuation guess is used
along with under-relaxation with ω = 0.5.

Matrix 0 1 2 3 4 5

thermal2 1343 904 727 646 623 608
af shell3 902 666 569 534 547 424
ecology2 1704 1114 879 799 759 725
apache2 1043 592 370 291 267 267
offshore 350 205 178 178 282 274

g3 circuit 903 567 498 419 357 291
parabolic fem 358 296 253 246 251 256

Table 6.16: Test of the iterative LDL preconditioner with increasing factorization level. The
configuration of the preconditioner is 10 sweeps for both construction and triangular solve.
All matrices have been re-ordered using the rcm ordering. The continuation guess is used
along with under-relaxation with ω = 0.5.

matrix 0 1 2 3 4 5

thermal2 1934 1225 856 637 507 440
af shell3 1248 788 583 462 369 309
ecology2 1625 988 696 576 467 414
apache2 1294 619 394 289 235 188
offshore 485 * * * * *

g3 circuit 1414 757 546 421 341 303
parabolic fem 313 238 164 129 106 91

Table 6.17: Test of the exact ilu preconditioner with increasing factorization level. All
matrices have been re-ordered using the RCM ordering

blk size 5 10 15

5 * * *
10 * 258 147
15 * 153 105
20 479 102 94

Table 6.18: Effect of the block size used in the block Jacobi triangular solves on solver
iterations for the matrix bcsstk24

174 Fine Grained ILU

(a) Nonlinear residual vs. ω (b) Iterations vs. ω

Fig. 6.2: Effect of underrelaxation parameter ω on nonlinear residual and solver iterations
for af shell3

(a) Nonlinear residual vs. ω (b) Iterations vs. ω

Fig. 6.3: Effect of underrelaxation parameter ω on nonlinear residual and solver iterations
for offshore

exact triangular solves yields a iteration count of 93 iterations. The block Jacobi method
was parallelized in the same way as the Jacobi solve.

6.4. Non-symmetric test cases. Upto now the experimental results have focussed
mainly on matrices that are symmetric and positive definite. This section will present
results of using the new factorization method on the non-symmetric matrices listed in 6.2.
In all cases the solver used was GMRES restarted after 50 iterations with a convergence
tolerance of 10−6. These results are summarized in table 6.19. The solver used was the one
implemented in the Belos package of Trilinos. The corresponding results with an under-
relaxation parameter ω = 0.5 are shown in table 6.20. These tests were carried out on our
GPU test platform, and for these cases the method of application of the preconditioner was
block-Jacobi with a block size of 20.

We see that the method breaks down for two of the six non-symmetric test cases. In
the remaining cases however its behaviour seems to conform to what we observed for the
LDL method.

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 175

(a) af shell3 (b) offshore

Fig. 6.4: Variation of solver iterations with shift for af shell3 and offshore. 5 sweeps were
used for the factorization and triangular solves.

matrix lvl 0 (5) lvl 0 (10) lvl 1 (5) lvl 1 (10) lvl 0 ex lvl 1 ex

atmosmodl 80 76 61 51 73 48
atmosmodd 195 189 153 100 186 90

stomach * * * * 10 5
venkat01 * * * * 15 11

FEM 3D thermal 2 10 8 9 6 8 6
chipcool0 86 75 43 39 75 39

Table 6.19: Solver iterations for non-symmetric test cases. The tests are for level 0 and level
1 matrices. The numbers in brackets indicate the number of sweeps used for the iterative
ILU method without under-relaxation and with a block size of 4096. “ex” denotes the
exact ILU preconditioner. The solver used was GMRES restarted at 50 iterations with a
convergence tolerance of 10−6.

matrix lvl 0 (5) lvl 0 (10) lvl 1 (5) lvl 1 (10) lvl 0 ex lvl 1 ex

atmosmodl 88 76 76 53 73 48
atmosmodd 236 190 185 104 186 90

stomach * * * * 10 5
venkat01 * * * * 15 11

FEM 3D thermal 2 10 8 8 6 8 6
chipcool0 98 81 78 42 75 39

Table 6.20: Solver iterations for non-symmetric test cases. The tests are for level 0 and level
1 matrices. The numbers in brackets indicate the number of sweeps used for the iterative
ILU method with ω = 0.5 and with a block size of 4096. “ex” denotes the exact ILU
preconditioner. The solver used was GMRES restarted at 50 iterations with a convergence
tolerance of 10−6.

176 Fine Grained ILU

7. Conclusions and future work. In this report we presented the implementation
of a fine grained parallel asynchronous technique for the construction of incomplete ILU and
LDL factorizations. We also presented a parallel technique for applying the preconditioner
in a parallel environment. Except for the LDL extension the technique in this papaer was
previously developed in [6]. The authors of that paper, however, did not use GPUs for
testing. Running the algorithm on GPUs exposed various robustness problems that were
mainly due to the particular thread assignment required for maximum efficiency, and the
large number of available threads. The technique initially implemented was not numerically
very robust and broke down on several of our test cases. We utilized under-relaxation, and a
continuation procedure for constructing initial guesses in order to alleviate these problems.
These measures were found to be effective and served to greatly increase the robustness of
the method.

For our implementation we used the Kokkos framework. It was found that the Kokkos
framework offers one flexibility similar to CUDA and OpenMP. In the present case the
implementation of the algorithm was not constrained by our choice of Kokkos as our im-
plementation platform. This work makes a convincing case for the adoption of Kokkos for
cross platform programming targeted at many core architectures.

There are several avenues of future work that remain open. The first is the develop-
ment of a block version of the iterative method and the second is the investigation of the
effectiveness of optimization based approaches to constructing approximate factorizations
such as stochastic gradient descent, in the context of ILU factorizations. The theoretical
understanding of the iterative ILU method is also severely lacking. There seems to be no
clear theoretical result that explains the remarkably good performance of the method even
when the nonlinear residual is large. The development of such theory would also constitute
a possible future topic of research.

8. Acknowledgements. The authors would like to acknowledge the reviewer, A. M.
Bradley, for his helpful comments and suggestions that led to non-trivial improvements in
this report.

REFERENCES

[1] MAGMA. http://icl.cs.utk.edu/magma/index.html, 2015. [Online; accessed 19-July-2015].
[2] Trilinos. http://www.trilinos.org, 2015. [Online; accessed 19-July-2015].
[3] H. Anzt, E. Chow, and J. Dongarra, Iterative sparse triangular solves for preconditioning, (to

appear).
[4] N. Buleev, A numerical method for the solution of two-dimensional and three-dimensional equations

of diffusion, Math. Sb, 51 (1960), p. 15.
[5] E. Chow, H. Anzt, and J. Dongarra, Asynchronous iterative algorithm for computing incomplete

factorizations on gpus, in Lecture Notes in Computer Science (LNCS), vol. 9137, Springer, 2015,
pp. 1–16.

[6] E. Chow and A. Patel, Fine-grained parallel incomplete lu factorization, SIAM Journal on Scientific
Computing, 37 (2015), pp. C169–C193.

[7] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions on
Mathematical Software (TOMS), 38 (2011), p. 1.

[8] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Comput-
ing, 74 (2014), pp. 3202–3216.

[9] A. Frommer and D. B. Szyld, On asynchronous iterations, Journal of computational and applied
mathematics, 123 (2000), pp. 201–216.

[10] C. T. Kelley, Iterative methods for optimization, vol. 18, Siam, 1999.
[11] T. A. Manteuffel, An incomplete factorization technique for positive definite linear systems, Math-

ematics of computation, 34 (1980), pp. 473–497.

http://icl.cs.utk.edu/magma/index.html
http://www.trilinos.org

A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow 177

[12] J. A. Meijerink and H. A. van der Vorst, An iterative solution method for linear systems of
which the coefficient matrix is a symmetric m-matrix, Mathematics of computation, 31 (1977),
pp. 148–162.

[13] M. Naumov, L. Chien, P. Vandermersch, and U. Kapasi, Cusparse library, in GPU Technology
Conference, 2010.

[14] T. A. Oliphant, An implicit, numerical method for solving two-dimensional time-dependent diffusion
problems, Quart. Appl. Math., 19 (1961).

[15] J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables,
Academic Press, New York, 1970.

[16] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2nd ed., 2003.
[17] R. S. Varga, Factorization and normalized iterative methods, tech. rep., Westinghouse Electric Corp.

Bettis Plant, Pittsburgh, 1959.

178 CR Summer Proceedings 2015

Applications

Articles in this section discuss the use of computational techniques such as those discussed
in the previous section to simulate physical systems.

Bynum, Klise, Laird, Murray, Seth, and Siirola describe their new Water Network Tool
for Resilience (WNTR). It is intended to help evaluate and improve the resilience of water
networks, a critical infrastructure. The focus of this report is the WNTR’s hydraulic model.
WNTR is implemented in Python and uses the modeling language Pyomo.

Go, Muñoz, and Watson assess the economic value of grid-scale energy storage sys-
tems as part of future generation, storage, and transmission systems. They formulate their
stochastic model as a Mixed Integer Linear Problem (MILP).

Newton, Rintoul, Valicka, and Wilson describe a new destination prediction algorithm
and apply it to predicting an aircraft’s destination based on the first half of its trajectory.
The algorithm builds a high-dimensional feature space using historical data and then uses
the method of nearest neighbors to make predictions.

Porter and Mousseau perform an uncertainty quantification study of the interfacial
mass transfer model in the light water reactor simulator CTF, a legacy code. They describe
an example of holistic uncertainty analysis using Bayesian calibration. The example is the
expression used to compute the vapor heat transfer coefficient for large bubbles and droplets
and for superheated small bubbles. The expression contains four uncertain parameters; the
authors use a number of experiments to estimate distributions for these.

Roberts, Mitchell, Thompson, and Tikare add two new capabilities to the Stochastic
Parallel Particle Kinetic Simulator (SPPARKS), a kinetic Montel Carlo material simulator:
the grain curvature diagnostic, and a temperature gradient extension of the Potts model for
simulating grain growth in metals.

Wang and Rothganger consider graph-theoretic aspects of the representation of state
and structural dynamics in spike timing-based neural networks. One application of these
ideas is to software simulations of neural networks.

A.M. Bradley
M.L. Parks

December 18, 2015

CCR Summer Proceedings 2015 179

WATER NETWORK HYDRAULICS WITH PRESSURE-DEPENDENT
DEMAND FOR WNTR: A WATER NETWORK TOOL FOR RESILIENCE

MICHAEL L. BYNUM∗, KATHERINE A. KLISE† , CARL D. LAIRD‡ , REGAN MURRAY§ ,

ARPAN SETH¶, AND JOHN D. SIIROLA‖

Abstract. Water networks are critical infrastructure. As such, damage to and/or contamination of
water networks can cause harm to entire communities. Tools for evaluating and improving the resilience of
water networks to adverse events are vital to protecting inhabitants of the United States. We are developing
just such a tool, WNTR: Water Network Tool for Resilience. In this paper, we review the models used in
WNTR to simulate the water network hydraulics, including pressure-dependent demand and pipe leaks.

1. Introduction. Communities around the world depend heavily on water distribution
systems to be reliable. Damage to the network (broken pipes, power outages, etc.) can create
a deficiency in the water supply. The U.S. EPA [4] defines the resilience of water networks as
“the ability of the human organizations that manage water to design, maintain, and operate
water infrastructure (e.g., water sources, treatment plants, storage tanks, and distribution
systems) in such a way that limits the effects of disasters on the water infrastructure and the
community it serves, and enables rapid return to normal delivery of safe water to customers.”
Water utilities need software tools to evaluate network performance during and after various
disaster scenarios to assist in making operational decisions to improve resilience (e.g., decide
which leaks to repair first). Demand driven models, such as EPANET, are not adequate to
simulate these types of extreme conditions [4]. WNTR, a Water Network Tool for Resilience,
is being developed to evaluate resilience while considering extreme conditions. The WNTR
API is flexible and allows for changes to the network structure and operations, along with
simulation of disruptie events and recovery actions. WNTR is compatible with EPANET
inp files [15].

The focus of this paper is on the hydraulics model used in WNTR. The paper covers,
in detail, both why certain models were chosen and how they are implemented. First, we
describe the basic modeling components including node mass balances, headloss in pipes,
head gain in pumps, tank dynamics, and valve and control operations.

Second, we review several pressure-dependent demand models and present the one used
in WNTR. In extreme conditions, the pressures throughout a water network are likely to
drop significantly. Common demand driven simulators that assume consumers can always
receive their requested demand are not suitable for these scenarios. Thus, WNTR uses
a pressure-dependent demand model to more realistically predict demands. In a pressure-
dependent demand model, the actual amount of water delivered to consumers depends on the
pressures in the network, so the network pressures, network flow rates, and actual delivered
demands must be solved for simultaneously.

Finally, we review several pipe leak models and present the one used in WNTR. Pipe
leaks are common occurrences due to both pipe deterioration and natural disasters. Addi-
tionally, leaks can cause large changes in network hydraulics, so they are modeled explicitly
in WNTR.

All model components other than pressure-dependent demand and pipe leaks were taken

∗Purdue University School of Chemical Engineering, bynumm@purdue.edu
†Sandia National Laboratories, kaklise@sandia.gov
‡Purdue University School of Chemical Engineering, lairdc@purdue.edu
§Environmental Protection Agency, murray.regan@epa.gov
¶Purdue University School of Chemical Engineering, setha@purdue.edu
‖Sandia National Laboratories, jdsiiro@sandia.gov

180 Water Network Hydraulics with Pressure-Dependent Demand

from EPANET [15]. EPANET is a water network simulator for both network hydraulics and
water quality. EPANET was developed by Lewis Rossman at the Environmental Protection
Agency. WNTR does not use EPANET as the hydraulics simulator because we want WNTR
to be purely a Python package. Python is an open-source, flexible, high-level language that
is easy to use an modify. Although EPANET is not used as the hydraulic simulator, WNTR
utilizes the same input file format used by EPANET.

2. Hydraulic Model Components. A hydraulic model represents a water network
as nodes connected by links. Nodes include junctions, tanks, reservoirs, and leaks, and links
include pipes, pumps, and valves. A hydraulic model consists of this network configuration
along with the laws of physics that govern the flow of water throughout the network. A hy-
draulic simulator uses a hydraulic model to compute the pressures and flow rates throughout
the network. This section reviews the hydraulic model components of WNTR.

2.1. Mass Balances at Nodes. WNTR uses the same mass balance equations as
EPANET [15]. Conservation of mass (and the assumption of constant density) requires

∑
p∈Pn

qp,n −Dact
n = 0 ∀n ∈ N (2.1)

where Pn is the set of pipes connected to node n, qp,n (m3/s) is the volumetric flow rate of
water into node n from pipe p, Dact

n (m3/s) is the actual volumetric demand out of node n,
and N is the set of all nodes. If water is flowing out of node n and into pipe p, then qp,n is
negative. Otherwise, it is positive.

2.2. Headloss in Pipes. The headloss formula used in WNTR is the Hazen-Williams
formula [15]:

Hnj −Hni = hL = 10.667C−1.852d−4.871Lq1.852 (2.2)

where hL is the headloss in the pipe in meters, C is the Hazen-Williams roughness coefficient
(unitless), d is the pipe diameter in meters, L is the pipe length in meters, and q is the flow
rate of water in the pipe in cubic meters per second. Hnj is the head (meters) at the starting
node, and Hni is the head (meters) at the ending node.

The flowrate in a pipe is positive if water is flowing from the starting node to the ending
node and negative if water is flowing from the ending node to the starting node. However,
Equation 2.2 is not valid for negative flowrates. Therefore, WNTR uses a reformulation of
this constraint:

hL =
{ −10.667C−1.852d−4.871L|q|1.852 q < 0 (2.3a)

10.667C−1.852d−4.871L|q|1.852 q ≥ 0 (2.3b)

Equation 2.3 is symmetric across the origin and valid for any q. Thus, this equation can
be used for flow in either direction. However, the derivative with respect to q at q = 0
is 0. In certain scenarios, this can cause the Jacobian of the set of hydraulic equations to
become singular (when q = 0). Therefore, WNTR uses a modified Hazen-Williams formula
by default. The modified Hazen-Williams formula splits the domain of q into six segments

M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola 181

to create a piecewise function as presented in Equation 2.4.

hL
k

=

−|q|1.852 q < −q2 (2.4a)
−(a|q|3 + b|q|2 + c|q|+ d) −q2 ≤ q ≤ −q1 (2.4b)
−m|q| −q1 < q ≤ 0 (2.4c)
m|q| 0 < q < q1 (2.4d)
a|q|3 + b|q|2 + c|q|+ d q1 ≤ q ≤ q2 (2.4e)
|q|1.852 q2 < q (2.4f)

where m, q1, and q2 are appropriate constants and

k = 10.667C−1.852d−4.871L (2.5)

The result is that flow can be in either direction and the derivative with respect to q is
non-zero at all values of q. Equations 2.4b and 2.4e function to smooth the transition from
Equation 2.4a to 2.4c and from Equation 2.4d to 2.4f, with coefficients chosen so that both
function and gradient values are continuous at −q2, −q1, q1, and q2. Appendix A describes
this technique in detail. Figures 2.1 and 2.2 compare the Hazen-Williams and modified
Hazen-Williams curves, with m = 0.01 m2.556/s0.852, C = 100, d = 0.5 m, and L = 200 m.
The figures show that the two formulas are essentially indistinguishable.

0.0 0.5 1.0 1.5 2.0
q (m3/s)

0

5

10

15

20

25

30

35

40

45

H
e
a
d
lo

ss
 (

m
)

Hazen-Williams
Modified Hazen-Williams

Fig. 2.1: A comparison of the Hazen-Williams formula and the Modified Hazen-Williams
formula.

WNTR can support multiple headloss relationships. Future work will include adding
other commonly-used formulas such as the Chezy-Manning formula [15] and the Darcy-
Weisbach formula [15].

2.3. Pumps. WNTR treats pumps as links that increase the head from the start node
to the end node. The gain in head provided by a pump is a function of the flow rate inside the
link, and, as in EPANET [15], pump curves are used to describe this relationship. WNTR
(and EPANET [15]) represent pump curves as a series of points from the head vs. flow
curve. WNTR currently supports single point and three point pump curves. Additionally,

182 Water Network Hydraulics with Pressure-Dependent Demand

0.000 0.002 0.004 0.006 0.008 0.010
q (m3/s)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

H
e
a
d
lo

ss
 (

m
)

Hazen-Williams
Modified Hazen-Williams

Fig. 2.2: Enlarged view of Figure 2.1.

WNTR supports constant power pumps (pumps that supply a constant power, or energy
per unit time, to the fluid). Future work will include support for multi-point curves and
variable speed pump curves where the pump curve changes based on speed settings.

2.4. Tanks. WNTR assumes tanks are cylindrical. A mass balance for a cylindrical
tank results in

dL

dt
=

4
πd2

Qnet (2.6)

where L is the tank level in meters, d is the tank diameter in meters, t is time in seconds, and
Qnet is the net inflow of water into the tank in m3/s. Because the tank level is proportional
to the tank head, dLdt may be replaced with dH

dt , where H is the tank head in meters. WNTR
discretizes Equation 2.6 using Explicit Euler to capture the tank level at specific time points
and to support solution with a nonlinear programming (NLP) solver. Discretizing with the
hydraulic time step as the stepsize results in

Ht −Ht−1 =
4
πd2

Qnet
t−1 4 t (2.7)

where Ht is the tank head at the current time step and Ht−1 is the tank head at the previous
time step. Future work will include support for non-cylindrical tanks via volume curves.

2.5. Valves. Currently, WNTR supports check valves and pressure-reducing valves.
Here is a list of valves that may be supported in the future:

• Pressure Sustaining Valve (PSV): Maintain pressure setting upstream.
• Pressure Breaker Valve (PBV): Force specified head loss.
• Flow Control valve (FCV): Limit flow to a specified amount.
• Throttle Control Valve (TCV): Control head-loss coefficient by changing setting.
• General Purpose Valve (GPV): User provided head-loss model.

2.6. Time Based Controls. WNTR has time-based controls for opening and closing
links implemented using the same approach used by EPANET [15]. Links may be opened

M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola 183

or closed at specified times during the simulation. In the future, WNTR will also support
time-based control of pump speed settings and valve settings.

2.7. Conditional Controls. WNTR supports conditional controls using the same
approach used by EPANET [15]. Links are opened or closed based on junction pressures
or tank levels. EPANET implements an adaptive step approach that identifies conditional
action times and inserts additional hydraulic time steps at these times. WNTR only sup-
ports fixed-time discretization. Future work will include support for a similar adaptive step
approach and for conditional control of pump speed settings and control valve settings.

3. Pressure-Dependent Demand. Common demand-driven simulators, such as EPANET
[15], assume consumers can always receive their requested demand even in pressure-deficient
conditions. In scenarios with power outages or pipe leaks, pressure-deficient conditions are
likely to occur. Thus, WNTR uses a pressure-dependent demand model in which the ac-
tual delivered demands depend on network pressures. The actual demands are solved for
simultaneously with the network pressures and flow rates.

3.1. Review. Gupta and Bhave[9] review several pressure-dependent demand models.
The first was proposed by Goulter and Coals[8] and Su et al.[16]:

Dact =

{
0 P ≤ Pmin

Ddes P ≥ Pmin
(3.1)

where Dact is the actual demand, Ddes is the desired demand, P is the pressure, and Pmin

is the pressure below which the consumer cannot receive any water. The primary downside
to this model is that it does not allow for partial flow. Reddy and Elango[14] used a model
that does allow partial flow:

Dact = S(P − Pmin)0.5 (3.2)

where S is a node specific parameter. However, this model allows unlimited flow, making it
more applicable to uncontrolled flows such as leaks. Germanopoulos[5] proposed a model of
an entirely different form:

Dact = Ddes(1− 10−c
P−Pmin

Pnom−Pmin) (3.3)

where c is a positive, node-specific constant and P nom is the pressure above which the
consumer should receive the desired demand. The upper limit of Dact in this equation is
Ddes as we would expect in reality. A significant computational benefit of this model is that
it is not a piecewise function. The primary problem is that the functional form does not
agree with Torricelli’s Law.

Torricelli’s Law is a special case of the Bernoulli Equation and states that the flow rate
through an orifice is proportional to the square root of the pressure difference across the
orifice. If the outlet pressure is atmospheric pressure, then this can be stated as:

D ∝√hg (3.4)

where hg is the gauge pressure head at the inlet.
Wagner et al.[19] proposed a piecewise function that allows partial flow, agrees with

Torricelli’s Law, and limits the maximum flow:

Dact =

0 P ≤ Pmin

Ddes(P−Pmin

Pnom−Pmin)
1
2 Pmin ≤ P ≤ P nom

Ddes P ≥ P nom

(3.5)

184 Water Network Hydraulics with Pressure-Dependent Demand

Giustolisi and Walski[7] extend this model for multilevel orifices (e.g., multiple story build-
ings have faucets at multiple elevations) and explain the need to cap the demand at the
requested demand. Above the nominal pressure, the customer controls the flow rate with a
faucet.

Wu et al.[20] used a model similar to that proposed by Wagner et al.[19]. Wu et al.[20]
used both a nominal pressure and a threshold pressure (P t):

Dact =

0 P ≤ 0
Ddes(P

Pnom)α 0 ≤ P ≤ P t
Ddes(P t

Pnom) P ≥ P t
(3.6)

This allows the actual demand to be higher than the requested demand but still places
an upper limit on the actual demand. Note that the exponent, α, is not limited to 0.5.
However, in all of their example applications, Wu et al.[20] use a value of 0.5.

3.2. Current Implementation. WNTR uses the pressure-dependent demand (PDD)
model proposed by Wagner et al.[19] (Equation 3.5) where Pmin and P nom must be specified
by the user. The reasons for choosing this model are listed below:

• It is commonly used [19, 7, 9, 13, 12, 17].
• The model aligns with what we expect in reality: Below a minimum pressure, the

consumer will not get any water; Above a nominal pressure, the consumer will
use the desired amount of water and close the faucet; Between the minimum and
nominal pressures, the consumer will receive partial flow.

• The square root form of the equation for partial flow agrees with Torricelli’s Law
[6].

Because the pressure-dependent demand model does not have a continuous derivative,
a smoothing technique is used to assist the solver as done for the Hazen-Williams formula
above. Appendix A describes the procedure in detail. Figure 3.1 compares the original PDD
model to the PDD model with smoothing (Pmin = 5 psig, P nom = 25 psig, and Ddes = 50
gpm).

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

A
ct

u
al

 N
o

d
e

D
em

an
d

 (
gp

m
)

Node Pressure (psig)

PDD

PDD Smoothed

Fig. 3.1: A comparison of the original PDD model and the smoothed PDD model.

To increase flexibility, future work includes implementing a more general form of the
PDD model where the exponent is 1

n and n is any positive integer.

M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola 185

4. Pipe Leaks. Pipe leaks are common occurences in water networks, especially after
a natural disaster. Pipe leaks can drastically change network hydraulics and, therefore,
must be modeled. In this section, we review several pipe leak models and then present the
model used in WNTR.

4.1. Review. According to Crowl and Louvar[3], a leak through a hole may be modeled
as an orifice:

Dleak = ACd
√

2ρPg (4.1)

where Dleak is the mass flow rate of fluid through the hole, A is the area of the hole, Cd is
the discharge coefficient, ρ is the density of the fluid, and Pg is the gauge pressure inside
the process equipment. The derivation of Equation 4.1 assumes that the pressure outside
the pipe is atmospheric pressure. If this assumption is not valid, Pg should be replaced with
4P , the absolute pressure inside the pipe minus the absolute pressure outside the pipe. The
discharge coefficient approaches 0.61 for sharp-edged orifices and Reynolds numbers larger
than 30,000. It approaches unity for well-rounded nozzles. Crowl and Louvar state that a
value of 1.0 should be used when the discharge coefficient is unknown in order to maximize
the flow.

The difficulty with Equation 4.1 is that Cd and A may vary with pressure. Giustolisi
and Walski[7] model leaks as

Dleak =

{
βLP γ P ≥ 0
0 P < 0

(4.2)

where L is the pipe length, P is the pressure inside the pipe, and β and γ are parameters.
Parameter values for γ are taken from other sources. For more information, see page 365 of
Giustolisi and Walski[7].

Cassa et al.[2] investigate the change in leak size (or leak area) due to the pressure in
the pipe. They report that the leak flow rate is proportional to hN1, where h is the pressure
head and N1 varies between 0.5 and 2.79 with a mean of 1.15. They seek to explain this
dependence (at least partially) with a relationship between area and pressure. They find
that hole size is linearly dependent on pressure, giving:

A = mP +A0 (4.3)

where A0 is the area of the hole without any pressure in the pipe and m is the slope of the
area-pressure relationship. Substituting Equation 4.3 into Equation 4.1 results in

Dleak = Cd
√

2ρ(mP 1.5
g +A0P

0.5
g) (4.4)

Additionally, Cassa et al.[2] found that round holes had small slopes, indicating that the
hole size only increased slightly with pressure. However, longitudinal and circumferential
cracks had relatively large slopes.

Lambert[11] gave an overview of pressure-leakage relationships. Again, Dleak ∝ PN1.
A list of the major points is below.

• The discharge coefficient, Cd, varies with the Reynolds number. However, for fully
turbulent flow, Cd ≈ 0.75.

• For longitudinal splits, Dleak ∝ P 1.5.
• For longitudinal and radial splits, Dleak ∝ P 2.5.
• In one study in Japan, holes were drilled in metal pipes to represent leaks, and the

pipes were placed in sand or water. N1 was found to be between 0.36 and 0.7.

186 Water Network Hydraulics with Pressure-Dependent Demand

• A study in the UK found N1 to be near 0.5 for metal pipes and 1.5 for plastic pipes.
• Ashcroft and Taylor[1] performed tests on 22 mm Class D polyethylene pipe. For

a 10 mm slit, N1 ≈ 1.39− 1.72. For a 20 mm slit, N1 ≈ 1.23− 1.97. The average
was 1.52.

• Ogura tested sectors of Japanese water distribution systems. Most of the distribu-
tion systems had metal mains. Ogura found N1 values between 0.65 and 2.12 with
an average of 1.15. This average (N1 = 1.15) was used as the Japanese standard
from approximately 1980 to at least 2000. Yeung later showed that Ogura’s results
may have been skewed high due to variation in the discharge coefficient.

Lambert[11] concludes that N1 should be around 1.5 for “small ‘background’ leaks”, 1.5 or
higher for larger leaks from plastic pipes, 0.5 for larger leaks out of metal pipes, and 1.0
when lacking information on pipe material or type of leak.

4.2. Current Implementation. In light of the above review, the primary factors
affecting the discharge coefficient and the exponent on pressure are flow regime, pipe ma-
terial, and orifice shape (longitudinal, round, circumferential). The current implementation
in WNTR uses Equation 4.5 as the default pipe leak model, which is a more general form
of Equation 4.1.

Dleak = CdA0

√
2ρPαg (4.5)

The default discharge coefficient is 0.75 (assuming turbulent flow [11]), but the user may
specify other values if needed. The value of α is set to 0.5 (assuming large leaks out of
steel pipes [11]). The user is required to specify the orifice area and the pipe for which the
leak occurs. The current implementation in WNTR simply adds a node to the network at
the location of the leak (halfway down the specified pipe) and sets the demand based on
Equation 4.5.

In the future, more detail will be added to the model to account for different types of
pipe material, different types of leaks, and different flow regimes. For example, we can set
α to different values depending on the pipe material or implement a variable area model (a
more general form of Equation 4.4) that can be used instead of the default if m is provided:

Dleak = Cd
√

2ρ(A0P
γ
g +mP γ+1

g) (4.6)

We will also allow for user-defined location of leaks (along the specified pipe) in the future.

5. Modeling Tools and Solvers. WNTR is a python package. Pyomo [10] is used
as the modeling language and Ipopt [18] is used as the solver. Pyomo is a python-based
optimization modeling language. Pyomo was used for several reasons. First, Pyomo has ex-
tensive modeling capabilities, such as built in tools for piecewise constraints, absolute values,
etc. Second, Pyomo is open source. Finally, because Pyomo is python based, the framework
is very flexible. This is important for WNTR because the set of hydraulic equations has
to be solved many times sequentially, with the activation of controls, re-initialization of the
problem, and many other operations between each time step. For these reasons, Pyomo
was favorable despite its design for optimization. Ipopt was chosen both because it is open
source and because it can solve large scale problems efficiently. Additionally, Pyomo has
an interface to Ipopt. An additional benefit to using Pyomo and Ipopt is that an objective
function can easily be added to the problem if desired.

6. Conclusions. WNTR, a Water Network Tool for Resilience is a tool for evaluat-
ing and improving resilience of water networks to adverse events such as terrorist attacks,
earthquakes, power outages, etc. Hydraulic models used in WNTR were reviewed in order to

M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola 187

present the current and future capabilites of this tool. The key hydraulic model components
are node mass balances, headloss in pipes, pump head gain, tank dynamics, valve operations,
controls, pressure dependent demand, and pipe leaks. Pressure-dependent demand is needed
to realistically predict demand in pressure deficient conditions. The pressure-dependent de-
mand model used is that proposed by Wagner et al.[19] because it allows partial flow, it
places an upper limit on the demand, and it agrees with Torricelli’s Law. A smoothing
technique is used to ensure continuity of the PDD function and its derivative. A review
of pipe leak models showed that most models have a similar form. The differences appear
in the values of the discharge coefficient, the leak area, and the exponent on the pressure.
The primary factors affecting these values are flow regime, pipe material, and leak shape.
Additionally, the leak area may be dependent on pressure. WNTR currently uses a simple
model (Equation 4.5) with a fixed area and an exponent of 0.5. However, more detail will
be added to the model to account for these factors in the future.

Disclaimer. The U.S. Environmental Protection Agency (EPA) through its Office of
Research and Development funded and collaborated in the research described here under
an Interagency Agreement with the Department of Energy’s Sandia National Laboratories.
It has been subjected to the Agency’s review and has been approved for publication. Note
that approval does not signify that the contents necessarily reflect the views of the Agency.
Mention of trade names products, or services does not convey official EPA approval, en-
dorsement, or recommendation.

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

A. Smoothing Piecewise Functions. This appendix describes the smoothing tech-
nique used for the Hazen-Williams headloss formula and for the pressure-dependent demand
model. Consider the following piecewise function:

y =
{
f1(x) x ≤ x1 (A.1a)
f2(x) x > x1 (A.1b)

where x1 is a constant. Consider the case where the piecewise function is continuous, i.e.,

f1(x1) = f2(x1) (A.2)

but the derivative is discontinuous, i.e.,

df1

dx

∣∣∣
x=x1

6= df2

dx

∣∣∣
x=x1

(A.3)

Because a discontinuous derivative can cause problems for many solvers, we insert a third
order polynomial between f1 and f2:

y =

f1(x) x ≤ (x1 − δ1) (A.4a)
fs(x) = ax3 + bx2 + cx+ d (x1 − δ1) < x < (x1 + δ2) (A.4b)
f2(x) x ≥ (x1 + δ2) (A.4c)

188 Water Network Hydraulics with Pressure-Dependent Demand

We solve for the coefficients of Equation A.4b such that both the function and its derivative
are continuous:

0 = f1(x1 − δ1)− fs(x1 − δ1) (A.5)
0 = f2(x1 + δ2)− fs(x1 + δ2) (A.6)
0 = f ′1(x1 − δ1)− f ′s(x1 − δ1) (A.7)
0 = f ′2(x1 + δ2)− f ′s(x1 + δ2) (A.8)

REFERENCES

[1] A. Ashcroft and D. Taylor, Ups and downs of flow and pressure, Surveyor, 162 (1983), pp. 16–18.
[2] A. Cassa, J. van Zyl, and R. Laubscher, A numerical investigation into the effect of pressure on

holes and cracks in water supply pipes, Urban Water Journal, 7 (2010), pp. 109–120.
[3] D. A. Crowl and J. F. Louvar, Chemical Process Safety: Fundamentals with Applications, Prentice

Hall, 2002.
[4] U. S. EPA, Systems measures of water distribution system resilience, Tech. Rep. EPA/600/R-14/383,

U.S. Environmental Protection Agency, Washington, DC, 2015.
[5] G. Germanopoulos, A technical note on the inclusion of pressure dependent demand and leakage

terms in water supply network models, Civil Engineering Systems, 2 (1985), pp. 171–179.
[6] O. Giustolisi and T. Walski, Demand components in water distribution network analysis, Journal

of Water Resources Planning and Management, 138 (2011), pp. 356–367.
[7] O. Giustolisi and T. Walski, Demand components in water distribution network analysis, Journal

of Water Resources Planning and Management, 138 (2012), pp. 356–367.
[8] I. C. Goulter and A. Coals, Quantitative approaches to reliability assessment in pipe networks,

Journal of Transportation Engineering, (1986).
[9] R. Gupta and P. R. Bhave, Comparison of methods for predicting deficient-network performance,

Journal of Water Resources Planning and Management, 122 (1996), pp. 214–217.
[10] W. Hart, C. Laird, J. Watson, and D. Woodruff, Pyomo: Optimization Modeling in Python,

vol. 67, Springer Verlag, 2012.
[11] A. Lambert, What do we know about pressure-leakage relationships in distribution systems, Pro-

ceedings of the IWA Conference: Systems Approach to Leakage Control and Water Distribution
Systems Management, (2001).

[12] D. Laucelli, L. Berardi, and O. Giustolisi, Assessing climate change and asset deterioration
impacts on water distribution networks: demand-driven or pressure-driven network modeling?,
Environmental Modelling & Software, 37 (2012), pp. 206–216.

[13] A. Ostfeld, D. Kogan, and U. Shamir, Reliability simulation of water distribution systems–single
and multiquality, Urban Water, 4 (2002), pp. 53–61.

[14] L. S. Reddy and K. Elango, Analysis of water distribution networks with head-dependent outlets,
Civil Engineering Systems, 6 (1989), pp. 102–110.

[15] L. A. Rossman, Epanet 2: Users manual, (2000).
[16] Y.-C. Su, L. W. Mays, N. Duan, and K. E. Lansey, Reliability-based optimization model for water

distribution systems, Journal of Hydraulic Engineering, 113 (1987), pp. 1539–1556.
[17] N. Trifunovic, Pattern Recognition for Reliability Assessment of Water Distribution Networks, PhD

thesis, University of Belgrade, 2012.
[18] A. Wächter and L. Biegler, On the Implementation of an Interior-Point Filter Line-Search Algo-

rithm for Large-Scale Nonlinear Programming, Mathematical Programming, 106 (2006), pp. 25–
57.

[19] J. M. Wagner, U. Shamir, and D. H. Marks, Water distribution reliability: Simulation methods,
Journal of Water Resources Planning and Management, 114 (1988), pp. 276–294.

[20] Z. Y. Wu, R. H. Wang, T. M. Walski, S. Y. Yang, D. Bowdler, and C. C. Baggett, Extended
global-gradient algorithm for pressure-dependent water distribution analysis, Journal of Water
Resources Planning and Management, 135 (2009), pp. 13–22.

CCR Summer Proceedings 2015 189

ASSESSING THE ECONOMIC VALUE OF GRID-SCALE ENERGY
STORAGE SYSTEMS FOR POWER SYSTEM EXPANSION PLANNING

RODERICK S. GO∗, FRANCISCO D. MUÑOZ† , AND JEAN-PAUL WATSON‡

Abstract. With increasing renewable energy investment, there is growing interest in both grid-scale
energy storage systems (ESS) as part of the transmission expansion planning problem to better utilize
and deliver this power to consumers. Furthermore, environmental regulations, such as Renewable Portfolio
Standards (RPSs), will influence the types of investment and operations decisions that are economically
feasible. Using a stochastic framework, we develop a unified generation, ESS, and transmission expansion
planning model formulated as a two-stage, Mixed Integer Linear Problem (MILP). This formulation allows
us to explore the economic value of ESS as a transmission asset in providing bulk energy management
services to increase renewable penetration.

1. Introduction. The electricity industry is in the midst of significant transformation
related to increasing renewable generation. Several studies have documented the challenges
associated with achieving significant levels of renewable generation, such as resource in-
termittency, transmission expansion, and regulatory uncertainty [7], [17], [18], [24]. While
these studies find that 20% is achievable without drastic changes, to generate the majority
of our electricity from renewable resources requires considering new means of system ex-
pansion planning, scheduling, and regulation. System operators in particular are faced with
significant uncertainties for the future in terms of demand growth, new generation capacity,
fuel costs, and regulations. As such, planners in both vertically integrated and decentral-
ized utility must be able to effectively model and study various technical, cost, and policy
regimes to make investment decisions to yield the lowest cost.

A key element of the transformation of the electricity industry is regulatory policies to
promote change in generation technologies. RPS requirements are popular market mecha-
nisms to incentivize generators to produce a minimum fraction of electricity from renewable
resources. The market provides flexibility for generators to purchase or sell Renewable
Energy Certificates (REC) to meet their RPS requirements. Previous studies show how
different implementations of state- v. federal-level RPS requirements can change both gen-
eration and transmission investment decisions [21], [28]. On the other hand, Muñoz, et al.
show how different approximations of the network model itself, such as ignoring transmission
congestion, can also lead to biased investment decisions to meet RPS requirements for the
lowest cost [19]. To meet RPS requirements for the lowest cost, system planners must be
able to effectively model and maximize the benefits of available renewable resources. Using
a co-optimization model, transmission planners can anticipate and promote investment in
specific locations, proactively building new transmission or reinforcing existing corridors.

While regulatory policies such as RPS requirements encourage new generation invest-
ment and generation, planners and operators must take into account the inherent intermit-
tency of the most popular renewable resources: wind and solar. Intermittency is a cause of
significant concern, because it reduces the value of these new investments and requires that
operators have enough reserve capacity to maintain a balance between supply and demand
through the day. Previous studies, such as [20], have studied the impact and capacity value
of renewable resources at high penetration levels, finding a decreasing capacity contribution
as renewable penetration increases. A significant factor in this decreasing value of renew-
ables is the need to maintain significant thermal reserve capacity on standby to mitigate

∗Johns Hopkins University, rgo@jhu.edu
†Universidad Adolfo Ibáñez and Sandia National Laboratories, fdmunoz@uai.cl
‡Sandia National Laboratories, jwatson@sandia.gov

190 Assessing the Economic Value of Grid-Scale Energy Storage

the risk of resource intermittency. While some of the variability in wind can be mitigated
by building generation at multiple locations, the issue of time-variability remains for solar.
While significant solar penetration can effectively eliminate the mid-day peak, as the sun
sets, the system must quickly rebalance by dispatching other resources to meet the evening
peak. The California Independent System Operator showed this pattern with its infamous
”duck curve” graph.

As such, there is significant interest in providing system flexibility–through market
mechanisms, regulatory requirements, or technical improvements. One area of intense com-
mercial and research interest is in energy storage, which can allow system operators to
decouple supply and demand as well as manage network congestion and other grid services.
For this reason, utilities such as PJM Interconnection and the California Public Utilities
Commission believe there is an economic value to energy storage systems (ESS) as a trans-
mission asset and have begun investing in bulk energy storage systems at key points in their
networks [1], [12].

Previous studies have attempted to optimally allocate and operate ESS as a network
asset. Early work also focused on the ability of ESS to increase network reliability by pro-
viding backup power for systems with high renewable penetration [3] as well as coordinated
control to correct for both short- and long-term power overloads in faulted network condi-
tions [31]. Pandžić, et al. created a novel algorithm in [23] to quickly allocate storage while
performing a sensitivity analysis on capital costs. Faghih, et al. also studied the economic
value of ESS in the presence of ramp constraints, showing that the value of ESS is a non-
decreasing function of price volatility, though the value of storage decreases significantly at
high capacities due to limited system ramping [8]. Further, Li and Hedman showed that
ESS can also lower switching and re-dispatch costs after network faults in N-1 contingency
cases [16]. However, they also showed that ESS could not completely offset the need for
transmission investments to maintain system security.

Various studies have also modeled economically efficient investment in ESS as part
of transmission expansion planning model [2], [9], [11]. In this context, ESS provides bulk
energy services for the network, such as load shifting and peak shaving. We extend this work
by assessing the economic interaction between investments in generation, energy storage,
and transmission on a simulated network under specific regulatory scenarios using a two-
stage, stochastic transmission expansion planning model. This study gives us insight into
the value of energy storage in relation to other available resources in increasing resource
adequacy and utilization and regulatory compliance. This expansion planning model can
be scaled up for use with realistic systems, but such work is beyond the scope of this paper.

2. Nomenclature. In this section, we present the nomenclature for the stochastic
transmission expansion planning model with storage.

2.1. Sets and Indices.
t Hours in day
b,b’ Buses on lines in network
g Generators
n(g) New generators
r(n) New renewable generators
l Transmission lines (existing and new)

2.2. Parameters.
Cinvn Annualized investment cost for new generators [$MM/MW-yr]
Com,fg Fixed O&M cost for generators [$/MW installed]

R.S. Go, F.D. Muñoz, and J.P. Watson 191

Com,vg Variable O&M cost for generators [$/MWh]
Cfuelg Fuel cost for generators [$/MMBtu]
HRg Heat rate for thermal generators [MMBtu/MWh]
Pmaxg Upper bound of power generation for generator g

Ces Annualized investment cost for energy storage for ESS [$MM/MWh-yr]
Cpc Annualized investment cost for power conversion for ESS [$MM/MW-yr]
Com,es Fixed O&M cost for ESS [$MM/MW installed]
Cd Discharge (variable O&M) cost for ESS [$MM/MWh discharged]
ηc Charging efficiency for ESS
ηd Discharging efficiency for ESS

Cinvl Annualized investment cost for new transmission line [$MM/yr]
Fmaxl Line real power flow capacity [MW]
Bl Susceptance on line l
P db,t Demand at bus b in time t [MW]
Cue Cost penalty for unserved energy [$/MWh]

REC Price of Renewable Energy Certificate [$/MWh]
RPS Renewable Portfolio Standard requirement
CAPminr Renewable Capacity minimum requirement
Ht Probabilistic weighting of each hour in the day
M Big M parameter for disjunctive constraints

2.3. Variables.

2.3.1. Investment Variables.
kesb Continuous investment for energy storage component of ESS at bus b
kpcb Continuous investment for power conversion component of ESS at bus b
xgn,b Integer investment for generator type n at bus b
xl Binary investment for new transmission lines l

2.3.2. Operations Variables.
pg,b,t Dispatch of generators at bus b in time t [MW]
pueb,t Load shed at bus b in time t [MW]

fl,t Flow on line l in time t [MW]
θb,t Phase angle at bus b in time t [radians]

sb,t Energy level in ESS at bus b in time t [MWh]
rcb,t Charging of ESS at bus b in time t [MW]
rdb,t Discharging of ESS at bus b in time t [MW]
brcb,t Binary variable indicating that ESS is charging
brdb,t Binary variable indicating that ESS is discharging

3. Model Formulation. In this section, we present the cost-minimization problem
formulation for a centralized planner, allowing investment into thermal and renewable gen-
erators, ESS, and transmission lines. The problem can be thought of as a two-stage problem,
with the first stage being the investment model–where all investment decisions are made–
and the second stage being based on an economic dispatch model–where the investment
decisions from the first stage are tested against different scenario days.

192 Assessing the Economic Value of Grid-Scale Energy Storage

In this formulation, we use an idealized representation of lossy ESS, with the energy
storage (i.e. kWh stored) and power conversion (i.e. kW charged or discharged) components
decoupled, allowing the model to decide the optimal power-to-energy ratio for the system,
similar to the formulation in [23]. This formulation can easily be adjusted to take into
consideration fixed parameters based on a portfolio of real ESS, such as pumped-hydro
storage, compressed air storage, or batteries. With this consideration, the first stage costs
(Cfs) is to minimize investment cost over new generators, transmission lines, and ESS
capacity, while the second stage costs (Css) include operational cost over all assets, as well
as considering RPS compliance and unserved energy penalties.

min Cfs + Css (3.1)

where:

Cfs =
∑
n,b

Cinvn xgn,b +
∑
l

Cinvl xl +
∑
b

Cinv,eskesb + Cinv,pckpcb (3.2)

Css =
∑
g,b,t

Ht

(
CfgHRg + Com,vg

)
pg,b,t +

∑
g

Com,fg Pmaxg (3.3)

+
∑
b,t

HtC
drdb,t +

∑
b

Com,eskpcb (3.4)

+
∑
b,t

HtC
uepueb,t (3.5)

+
∑
b,t

REC ·Ht

RPS · P db,t −∑
r(g)

pg,b,t

 (3.6)

Due to the long-term planning nature of this model, more detailed constraints, such as
unit commitment variables, forced outage rates, ramp rates, and lower bounds for power
generators are not explicitly considered. Previous studies have discussed the tradeoffs asso-
ciated with excluding different operating constraints in generation planning models [22].

s.t.
∑
l(:,b)

fl,t −
∑
l(b,:)

fl,t + pg,b,t + rdb,t − rcb,t + pueb,t = P db,t ∀b, t (3.7)

pg,b,t ≤ Pmaxg ∀g, b, t (3.8)

−Fmaxl ≤ fl,t ≤ Fmaxl ∀l, t (3.9)
fl,t = Bl (θb,t − θb′,t) ∀l, t (3.10)

(3.11)

For new generators or lines, (3.8)–(3.10) must be modified as disjunctive constraints to
incorporate the investment decision:

pn,b,t ≤ Pmaxg xgn,b ∀n(g), b, t (3.12)

−Fmaxl xl ≤ fl,t ≤ Fmaxl xl ∀l, t (3.13)
−M (1− xl) ≤ fl,t −Bl (θb,t − θb′,t) ≤M (1− xl) ∀l, t (3.14)

(3.15)

Next, we add the storage constraints. Response times for ESS, which may range from
milliseconds to many minutes depending on specific technology, are not considered in this

R.S. Go, F.D. Muñoz, and J.P. Watson 193

formulation. This is similar to the exclusion of unit commitment constraints in the genera-
tion formulation.

sb,t = sb,t−1 + ∆t
(
ηcrcb,t − rdb,t/ηd

) ∀b, t (3.16)

sb,t ≤ kesb ∀b, t (3.17)
rcb,t ≤ kpcb ∀b, t (3.18)

rdb,t ≤ kpcb ∀b, t (3.19)

rcb,t ≤M · brcb,t ∀b, t (3.20)

rdb,t ≤M · brdb,t ∀b, t (3.21)

brcb,t + brdb,t ≤ 1 ∀b, t (3.22)

We also explicitly prevent ESS at each bus from simultaneously charging and discharging
in (3.20)–(3.22). This phenomenon can occur in a model that does not track charging and
discharging if there are sufficiently negative locational marginal prices; however, in practice
such operational behavior is unrealistic. If this phenomenon were not explicitly prevented,
we expect that the model would tend to over-estimate the value of ESS by allowing it
to provide an unrealistic increase in system flexibility. This is reflected in a consistent
reduction in total system cost and general trend of increased investment into ESS over the
same scenarios without simultaneous charging, shown in Table 3.1.

Table 3.1: Change in Total System Cost Due to Simultaneous Charging/Discharging in ESS

∆ Total Cost [$MM] ∆ ESS Investment [$MM]
0% RPS 0 3.8
25% RPS 0 -11.8
40% RPS -14 9.8
75% RPS* -49 9.8

Negative prices are increasingly a reality in power systems, due to regulatory incentives
such as Production Tax Credits (PTCs), Feed-In Tariffs (FITs), or in the case of our study,
RECs associated with RPS requirements. Due to the non-dispatchability of renewables,
in low demand–high sun/wind availability situations it can be cheaper or even profitable
to keep renewables online and get credit for renewable generation toward PTCs, FITs,
or RECs [5]. While ESS can provide some flexibility in the system by absorbing excess
generation (thereby reducing the likelihood of negative prices), in scenarios with significant
RPS requirements and very high REC prices, negative locational marginal prices may simply
be unavoidable. While previous studies, such as [13] and [14], have used binary variables to
track ESS charging and discharging in operational and ESS control models, to the best of our
knowledge, there have been no previous studies using binary variables for co-optimization
in joint generation, transmission, and ESS expansion planning model.

Finally, we make the problem separable by day for future solution algorithms (e.g.
parallel Benders decomposition) by further requiring that the energy storage level (3.16) at
the beginning of each day coincide with the energy storage level at the end of the same day:

sb,1 = sb,T + ∆t
(
ηcrcb,t − rdb,t/ηd

)
(3.23)

A similar formulation to link the first and last hour of each sampled day is presented in
[15]. By using this constraint, we avoid linking the otherwise disconnected days from our
sampled year.

194 Assessing the Economic Value of Grid-Scale Energy Storage

Fig. 4.1: Diagram of 24-bus IEEE Reliability
Test System 1996. Six buses with available
wind for renewable investment are marked
in blue, each with a different wind profile.
Adapted from [6].

4. 24-Bus IEEE Reliability Test
System with Renewables. Results in
this paper are based on the 24-bus IEEE
Reliability Test System 1996 (IEEE RTS-
96), which includes 24 buses, 34 transmis-
sion lines, and 32 existing generators with
a total installed capacity of 3,405 MW [4].
The existing generators are separated into
nine groups based on fuel and generation
technology. Peak system demand is set at
6,000 MW for all tests. A schematic of the
system is shown in Figure 4.1. The system
is divided into two voltage areas.

Updated costs for existing generators
are shown in Table 4.1, based on current
fuel and O&M costs from the U.S. Energy
Information Agency [26], [27]. Capacities
and costs for new generators are compiled
from the same data and shown in Table 4.2.

Investments into new transmission lines
are limited to existing corridors. Costs
for transmission investments are derived
from the prescribed line length from
the IEEE RTS-96 and investment cost
of $0.45MM/mile for 138 kV lines and
$0.95MM/mile for 230 kV lines from [25].
Cost information for ESS is based on costs
from surveys and previous studies [23], [29].
ESS is assumed to have an 81% roundtrip
efficiency. The fixed and variable O&M costs for ESS are set at $5000/MW and $5/MWh
for all tests, with investment cost into energy storage components at $50/kWh and power
conversion components at $1000/kW, asssuming a 20 year lifespan.

Table 4.1: Updated Capital and Operating Costs for Existing Generators in the IEEE RTS-
96

Gen. Group Pmaxg Cfuelg Com,fg Com,vg HRg
U12 12 11.47 13,170 3.6 12,000
U20 20 16.53 7,040 15.5 14,500
U50 50 – 14,800 2.65 –
U76 76 2.26 51,400 7.22 12,000
U100 100 11.47 13,170 3.6 10,000
U155 155 2.26 51,400 7.22 9,700
U197 197 11.47 13,170 3.6 9,600
U350 350 2.26 51,400 7.22 9,500
U400 400 0.72 93,300 2.14 10,000

R.S. Go, F.D. Muñoz, and J.P. Watson 195

Table 4.2: Capital and Operating Costs for New Generators

Technology Pmaxn Cfueln Com,fn Com,vn HRn Cinvn

CC 620 4.38 13,170 3.6 7.05 0.728
CT 85 4.38 7,040 15.45 10.85 0.51
Nuc. 2,234 0.72 93,280 2.14 9.612 0.385
IGCC 600 2.26 62,250 31.7 8.7 0.295
PV – – 24,690 – – 0.276
Wind – – 39,550 – – 0.183

Annual demand, wind, and solar PV profiles are obtained from Muñoz and Mills [20].
These profiles are based on five years of data, normalized for demand growth to a peak
annual demand of 6000 MW. These profiles are then sampled over 10,000 replications, and
the best sampled is selected based on minimization of the sum of squared differences of
means, variances, and correlations between the original data and the sample.

As shown in Figure 4.1, wind is available in six buses, with wind profiles at each bus
having different correlations with respect to demand to simulate local variability in wind
resources. Two solar profiles (one for each of the two voltage areas) are available at all 24
buses in the system. The authors of the original data set suggest that a sample size of at
least 50 representative days is necessary to accurately reflect the original data. However,
for the purposes of this paper, a sample of five representative days is used to make the case
studies computationally tractable.

5. Case Studies. Using the model described in Section 3, we perform a sensitivity
analysis on key parameters related to energy storage and renewable generation regulations
(namely RPS requirements) to understand the impact of ESS on regulatory compliance.
All model runs use the Pyomo 4.1 [10] modeling language and associated PySP stochastic
programming package [30] and are solved using CPLEX 12.6.2 on a quad-core mobile work-
station with 8 GB of RAM. All cases were solved to a 0.5% optimality gap tolerance, unless
marked by an asterisk (*).

5.1. Cost Reductions. Table 5.1 summarizes the change in investments for genera-
tors, transmission lines, and ESS, and the change in expected operations costs (including
RPS non-compliance and load shedding costs) in each RPS requirement scenario.

Table 5.1: Change in Investment and Expected Operations Costs Due to ESS Availability
[$MM]

ESS ∆ Total ∆ Gen. ∆ Lines ∆ O&M
0% RPS 98 -214 -148 -57 -107
25% RPS 181 -294 45 -40 -481
40% RPS 221 -435 3 -79 -580
75% RPS* 324 -820 424 15 -1,573

In each RPS scenario, we see a significant savings in total system cost. For generator
investments, we savings in the 0% RPS scenario, but increases in generation investment–
namely in renewable generators–due to increased RPS incentive when paired with ESS. In
all but the most extreme RPS scenario, we see reductions in transmission line investments
as well, with fewer lines built to reinforce corridors with renewable generation. Significant
operational savings are seen as well, largely due to reductions in load shedding, RPS non-
compliance, with a minority of savings coming from reduced fuel consumption.

196 Assessing the Economic Value of Grid-Scale Energy Storage

5.2. Utilization of ESS to Reduce Unserved Energy. To test the value of storage
with respect to reducing unserved energy in the system, we set the value of lost load–the
penalty incurred for unserved energy–at $1000/MWh, which is used in many markets. At
various RPS levels, we calculate both the expected and peak unserved energy, shown in
Table 5.2.

Table 5.2: Expected and Peak Unserved Energy for Each RPS Scenario

Expected Unserved [MWh/day] Peak Unserved [MW] ESS Investment
No ESS With ESS No ESS With ESS [$MM]

0% RPS 174 36 182 80 98.2
25% RPS 307 11 280 29 181.4
40% RPS 304 5 285 25 211.4
75% RPS* 368 0 324 0 324.4

As RPS requirements (though not necessarily RPS compliance, as shown in Table 5.3)
increases, we see that both expected and peak unserved energy increases for cases without
ESS, meaning that it is more economical to accept the $1,000/MWh cost than invest in a
new peaking generator. However, the reverse is true for cases with ESS: both expected and
peak unserved energy decrease with higher RPS requirements, as there is more ESS capacity
to economically absorb the load imbalances in the system. From this, we can conclude that
ESS availability is able to offset some investment into expensive, peaking generators by
providing some bulk energy services in times of high demand.

5.3. Contribution of ESS to Increasing RPS Compliance. A Renewable Port-
folio Standard incentivizes generators to generate a fraction of total energy from renewables
using a Renewable Energy Certificate system that sets a price for renewable generation.
Currently, different states in the US have RPS requirements as high as 33%, with discussion
in California to raise that to 40%. However, the challenge with increasing renewable penetra-
tion is the increased volatility of supply: as a result, significant amounts of fast responding
reserve capacity and other flexibility mechanisms, such as ESS, must be incorporated to
meet demand.

To model RPS compliance, we use the method of Lagrangian relaxation to add the RPS
requirement directly to the objective (3.6). With Lagrangian relaxation, under- or over-
compliance is penalized or rewarded based on a fixed cost (this corresponds to the REC
price in a real market). A sensitivity analysis can find the REC price that just complies
with the RPS constraint. It follows that, for increasing RPS requirements, the REC price
will increase to incentivize compliance. Table 5.3 summarizes the findings of this section.

Table 5.3: Renewable Portfolio Standard Compliance and Renewable Utilization

Expected RPS Compliance Expected Renewable CF
No ESS With ESS No ESS With ESS

0% RPS / $0 REC 7% 14% 33% 32%
25% RPS / $25 REC 20% 43% 32% 31%
40% RPS / $50 REC 34% 57% 34% 31%
75% RPS / $125 REC* 45% 76% 30% 27%

From Table 5.3, we can see that RPS compliance nearly doubles when ESS is available in
each RPS scenario; however, the expected utilization of renewable resources–defined here as
the capacity factor for all renewables–does not change significantly. As such, we gather that

R.S. Go, F.D. Muñoz, and J.P. Watson 197

ESS is not helping better capture renewable resources but simply making over-investment
in renewable capacity economically viable for the system. This argument will be verified
in the following subsections. While four RPS scenarios were tested, we present only two
extreme cases in this paper: 0% and 75%. It should be noted that the 75% RPS scenario
with ESS was only solved to 1.5% optimality gap due to time limitations.

5.3.1. 0% RPS with $0 REC. Initially, we test the model with no RPS requirement
as a base case. Comparing, Figure 5.1 to Figure 5.2, we see significant changes in opera-
tional behavior in the system. This is most evident in the flattening of thermal generation
and almost 70% reduction in peak unserved energy (load shed). With ESS, 14% of the
total generation comes from renewables, compared to just 7% in the scenario without ESS,
showing that ESS is an economic choice for increasing the value of renewables in the system.

0

1000

2000

3000

4000

5000

P
ow

er
[M

W
]

System Demand
Net Discharge
Renewables
Thermal

0 24 48 72 96 120

Hours

0

50

100

150

200

L
oa

d
S

h
ed

[M
W

]

Fig. 5.1: Operational results without energy storage for five sampled days given the default
capital costs associated with ESS ($50/kWh and $1000/kW over a 20 year operational life).
Note y-axis scales change between figures.

198 Assessing the Economic Value of Grid-Scale Energy Storage

−1000

0

1000

2000

3000

4000

5000

P
ow

er
[M

W
]

System Demand
Net Discharge
Renewables
Thermal

0 24 48 72 96 120

Hours

0

20

40

60

80

L
oa

d
S

h
ed

[M
W

]

Fig. 5.2: Operational results with energy storage for five sampled days given the default
capital costs associated with ESS ($50/kWh and $1000/kW over a 20 year operational life).
Note y-axis scales change between figures.

5.3.2. 75% RPS with $125 REC*. Over the long term, we can expect that RPS
requirements could be pushed to even higher levels, such as 75%. To test such a scenario,
we again run the model again with a 75% RPS requirement and a $125 REC.

0

1000

2000

3000

4000

5000

P
ow

er
[M

W
]

System Demand
Net Discharge
Renewables
Thermal

0 24 48 72 96 120

Hours

0

100

200

300

L
oa

d
S

h
ed

[M
W

]

Fig. 5.3: Operational results without energy storage for five sampled days given a 75% RPS
requirement and associated $125 Renewable Energy Certificate price. Note y-axis scales
change between figures.

In Figure 5.3, the model invests just enough capacity to meet the lowest mid-day system
demand, so that peak renewable generation never exceeds system demand. This is a rational
choice for the model, since energy (demand or supply) cannot be shifted to other times of
the day. Because of this limitation, the model only achieves a 45% RPS compliance.

R.S. Go, F.D. Muñoz, and J.P. Watson 199

−2000

0

2000

4000

6000

P
ow

er
[M

W
]

System Demand
Net Discharge
Renewables
Thermal

0 24 48 72 96 120

Hours

0.00

0.02

0.04

0.06

L
oa

d
S

h
ed

[M
W

]

Fig. 5.4: Operational results with energy storage for five sampled days given a 75% RPS
requirement and associated $125 Renewable Energy Certificate price. Note y-axis scales
change between figures.

In contrast, Figure 5.4 shows that the model with ESS available significantly over-invests
in renewable generation capacity such that peak renewable generation meets or exceeds
system demand for every sampled day. ESS captures any excess renewable generation and
discharges throughout off-peak periods, providing cost savings in the form of reduced thermal
dispatch. As in the 0% RPS requirement scenario, we continue to see both significant
flattening of the thermal generation time series and reductions in unserved energy.

5.4. ESS Operational Behaviors. We observe two types of operational behavior
from the operational time series plots: 1) arbitrage and 2) peak shaving. In low-peak days,
ESS charges significantly when cheap, renewable (solar PV) production is highest during
the day and discharges at all other times, when costly thermal generators would otherwise
be necessary. While our model does not explicitly consider unit commitment and ramping
decisions, it is reasonable to expect that adding these constraints would further favor this
kind of arbitrage behavior. On the high-peak days, we see the second behavior, where the
storage switches from net-charge to net-discharge around midday to help the system meet
peak demand. Again, if unit commitment and ramping decisions were considered in the
system, this peak shaving behavior could produce further net cost savings.

6. Conclusions and Future Work. Using a stochastic transmission expansion plan-
ning formulation based on economic dispatch, we are able to optimize bulk energy manage-
ment using ESS in conjunction with generation and transmission expansion. In small test
cases of only five sampled days, we see that ESS is able to add value to the system by re-
ducing the likelihood of unserved energy in sampled days and, more importantly, increasing
RPS compliance.

There are significant computational hurdles to solving the extensive form of this mixed-
integer expansion planning model for systems of realistic size or with many sampled days,
both of which would be required for practical use, that are beyond the scope of this paper.
As such, future work based on [19] will implement a novel Benders decomposition algorithm
to allow us to parallelize and solve the problem on a high performance computing platform
in a reasonable amount of time. We will use a 240-bus representation of the Western Energy

200 Assessing the Economic Value of Grid-Scale Energy Storage

Coordinating Council (WECC) system as a case study for this algorithm.

REFERENCES

[1] M. Abdurrahman, S. Baker, B. Keshavamurthy, and M. Jacobs, Energy storage as a transmission
asset, tech. rep., PJM Interconnection, 2012.

[2] D. Azari, S. S. Torbaghan, M. Gibescu, and M. A. van der Meijden, The Impact of Energy
Storage on Long Term Transmission Planning in the North Sea Region, in IEEE Power and
Energy Society General Meeting, 2014.

[3] Bagen and R. Billinton, Impacts of Energy Storage on Power System Reliability Performance, in
Canadian Conference on Electircal and Computer Engineering, 2005, pp. 494–497.

[4] R. Christie and C. Grigg, University of Washington Power Systems Test Case Archive, IEEE RTS
1996.

[5] J. Cochran, M. Miller, M. Milligan, E. Ela, D. Arent, and A. Bloom, Market Evolution: Whole-
sale Electricity Market Design for 21st Century Power Systems, tech. rep., National Renewable
Energy Laboratory, October 2013.

[6] A. J. Conejo, M. Carrión, and J. M. Morales, Decision Making Under Uncertainty in Electricity
Markets, Springer Science+Business Media, 2010.

[7] EnerNex Corporation, Eastern Wind Integration and Transmission Study, Tech. Rep. NREL/SR-
5500-47078, National Renewable Energy Laboratory, 2011.

[8] A. Faghih, M. Roozbehani, and M. A. Dahleh, Optimal Utilization of Storage and the Induced Price
Elasticity of Demand in the Presence of Ramp Constraints, in IEEE Conference on Decision and
Control and European Control Conference, 2011.

[9] M. Hadayati, J. Zhang, and K. W. Hedman, Joint Transmission Expansion Planning and Energy
Storage Placement in Smart Grid Towards Efficient Integration of Renewable Energy, in IEEE
Power and Energy Society T&D Conference and Exposition, 2014.

[10] W. E. Hart, C. Laird, J.-P. Watson, and D. L. Woodruff, Pyomo–Optimization Modeling in
Python, vol. 67, Springer Science+Business Media, 2012.

[11] Z. Hu, F. Zhang, and B. Li, Transmission Expansion Planning Considering the Deployment of
Energy Storage Systems, in IEEE Power and Energy Society General Meeting, 2012.

[12] B. Kaun, Cost-Effectiveness of Energy Storage in California: Application of the EPRI Energy Storage
Valuation Tool to Inform the California Public Utilities Commission Proceeding R. 10-12-007,
Tech. Rep. 3002001162, Electric Power Research Institute, 2013.

[13] M. E. Khodayar, M. Shahidehpour, and L. Wu, Enhancing the Dispatchability of Variable Wind
Generation by Coordination with Pumped Storage Hydro Units in Stochastic Power Systems,
IEEE Transactions on Power Systems, 28 (2013), pp. 2808–2818.

[14] M. Koller, T. Borsche, A. Ulgib, and G. Andersson, Defining a Degradation Cost Function
for Optimal Control of a Battery Energy Storage System, in PowerTech, IEEE Grenoble, 2013,
pp. 1–6.

[15] I. Konstantelos and G. Strbac, Valuation of Flexible Transmission Investment Options Under
Uncertainty, IEEE Transactions on Power Systems, 30 (2015), pp. 1047–1055.

[16] N. Li and K. W. Hedman, Economic Assessment of Energy Storage in Systems with High Levels of
Renewable Resources, IEEE Transactions on Sustainable Energy, 6 (2015), pp. 1103–1111.

[17] T. Mai, R. Wiser, D. Sandor, G. Brinkman, G. Heath, P. Denholm, D. J. Hostick, N. Dargh-
outh, A. Schlosser, and K. Strezepek, Exploration of High-Penetration Renewable Electricity
Futures. Vol. 1 of Renewable Electricity Futures Study, Tech. Rep. NREL/TP-6A20-52409-1, Na-
tional Renewable Energy Laboratory, 201.

[18] N. Miller, M. Shao, S. Pajic, and R. D’Aquila, Western Wind and Solar Integration Study Phase
3 – Frequency Response and Transient Stability, Tech. Rep. NREL/SR-5D00-62906, GE Energy
Management, National Renewable Energy Laboratory, 2014.

[19] F. D. Muñoz, Engineering-Economic Methods for Power Transmission Planning under Uncertainty
and Renewable Resource Policies, PhD thesis, Johns Hopkins University, January 2014.

[20] F. D. Muñoz and A. D. Mills, Endogenous Assessment of the Capacity Value of Solar PV in
Generation Investment Planning Studies, tech. rep., Sandia National Laboratories and Lawrence
Berkeley National Laboratories, January 2015.

[21] F. D. Muñoz and J.-P. Watson, A Scalable Solution Framework for Stochastic Transmission and
Generation Planning Problems, Computational Management Science, (2015).

[22] B. Palmintier, Flexibility in Generation Planning: Identifying Key Operating Constraints, in Power
Systems Computation Conference, August 2014.

[23] H. Pandžić, Y. Wang, T. Qiu, Y. Dvorkin, and D. S. Kirschen, Near-Optimal Method for Sit-
ing and Sizing of Distributed Storage in a Transmission Network, IEEE Transactions on Power

R.S. Go, F.D. Muñoz, and J.P. Watson 201

Systems, 30 (2015), pp. 2288–2300.
[24] I. J. Pérez-Arriaga, Managing Large Scale Penetration of Intermittent Renewables, tech. rep., Mas-

sachusetts Institute of Technology Energy Institute, 2011.
[25] PJM Interconnection, Transmission System Operations TO1, Interconnection Training Program.

Presentation, 2011.
[26] U.S. Energy Information Agency, Updated Capital Cost Estimates for Utility Scale Electricity

Generating Plants, tech. rep., April 2013.
[27] , Short Term Energy Outlook, tech. rep., June 2015.
[28] S. Vajjhala, A. Paul, R. Sweeney, and K. Palmer, Green Corridors: Linking Interregional Trans-

mission Expansion and Renewable Energy Policies, tech. rep., Resources for the Future, 2008.
[29] V. Viswanathan, M. Kintner-Meyer, P. Balducci, and C. Jin, National Assessment of Energy

Storage for Grid Balancing and Arbitrage, Phase II, Volume 2: Cost and Performance Charac-
terization, Tech. Rep. PNNL-21388, Pacific Northwest National Laboratory, September 2013.

[30] J.-P. Watson, D. L. Woodruff, and W. E. Hart, PySP: Modeling and Solving Stochastic Programs
in Python, Mathematical Programming Computation, 4 (2012), pp. 109–149.

[31] Y. Wen, G. Chuangxin, and S. Dong, Coordinated Control of Distributed and Bulk Energy Storage
for Alleviation of Post-Contingency Overloads, Energies, 7 (2014), pp. 1599–1620.

CCR Summer Proceedings 2015 202

EFFICIENT DESTINATION PREDICTION USING AIRCRAFT
TRAJECTORY DATA

BENJAMIN D. NEWTON∗, MARK D. RINTOUL† , CHRIS G. VALICKA‡ , AND ANDREW T.

WILSON§

Abstract. Efficiently and accurately predicting an expected future destination, given only the past
trajectory of some object, person, or vehicle is desirable in many application domains. In this work we
outline a novel method for predicting destinations given a data set of historical trajectories. The method
works by first creating feature-vectors for multiple partial trajectories for each historical trajectory, then
finding, in this high-dimensional space, nearest neighbors to a feature vector created for a new trajectory.
Our method is tested on a large data set of real-world aircraft trajectories. We show examples of where our
method works well, and where it could be improved, and demonstrate that with a large training data set
destination airports can be predicted with 63% accuracy, and 85% of destination airports can be predicted
correctly given 5 guesses, using just the first half of an unfinished trajectory.

1. Introduction. Within the deluge of data being analyzed by today’s data scientists
are many instances of time-indexed position information, called trajectories. The analysis of
trajectories has been well studied in many fields, and efforts continue to improve trajectory
analysis techniques [7]. In this work we concentrate on the objective of efficiently predicting
the eventual destination location of an unfinished trajectory given a database of historical
trajectories. We make no assumption about potential constraints on the routes, such as a
network of roads, and we desire to be able to quickly obtain results given a data set of millions
or even hundreds of millions of trajectories. Predicting destinations is applicable to many
problem domains. For example, with accurate destination prediction a user’s smart phone
could determine where the user is likely traveling, and inform them of their estimated time of
arrival and/or alert the user of potential issues (i.e. dynamic traffic alerts) or opportunities
along the route. In addition, if a hybrid vehicle were able to accurately predict its expected
route and destination, its energy usage could be optimized by, for example, delaying a
battery recharge until regenerative braking could be used on an upcoming hill [2]. One
could even imagine trajectories being extracted eye-tracking data (time-indexed positions
of where a user is looking on a screen), and predicting in real-time to which position on a
screen a user’s eyes were moving.

Our approach exploits two characteristics exhibited by many types of trajectory data.
First, a very similar route is generally taken from a specific origin to a specific destina-
tion. Second, most new trajectories are very similar to a previously seen trajectory, given
enough historical data [3]. Given these facts, to predict an expected destination we first
generate multiple feature vectors in a high-dimensional space for each historical trajectory.
Then, nearest neighbors are found, in the feature-space, for the unfinished trajectory whose
destination we wish to predict. Confidence values are assigned to each of the most similar
trajectories, and finally the probable destination location is determined.

We use a large database of aircraft trajectory data to demonstrate the efficacy and effi-
ciency of this method for predicting trajectory destination locations. Although our method
is general enough to work on other types of trajectories, analyzing air traffic allows us to
experiment with a large-scale real-world database, where origin and destination locations
are generally well-defined.

∗The University of North Carolina at Chapel Hill, bn@cs.unc.edu
†Sandia National Laboratories, mdrinto@sandia.gov
‡Sandia National Laboratories, cgvalic@sandia.gov
§Sandia National Laboratories, atwilso@sandia.gov

B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 203

The remainder of this paper is organized as follows. In the next section we summarize
several works related to trajectory destination prediction. Next, in Section 3 the problem we
desire to solve is formally defined, and section 4 describes our trajectory data set. Section 5,
then, details each stage of our method, and in Section 6 various results of predicting desti-
nations with our method are discussed. Finally in Section 7 we describe some opportunities
for future work, and conclude.

2. Related Work. Trajectory destination prediction has been studied in several dif-
ferent contexts, and using several different methods. Some of the most relevant research is
summarized below.

Froehlich and Krumm describe their route prediction system in [3]. They use a version
of the Hausdroff distance to compare and Dendogram clustering to merge cleaned trip
trajectories into common routes. Using similar methods, partial trajectories were then
compared with the routes to obtain a predicted destination. The method was tested on a
database of automobile trajectories collected from 250 drivers. The results show that half
way through a trip, the future route can be correctly predicted 20% of the time, and the
correct route is in the top 10 matches 40% of the time. Considering only repeat trips, the
same values jump to 40% and 97% respectively. Because this method must compare every
pair of trajectories in the input (n2 comparisons), it will likely not scale well to large data
sets, such as the hundreds of thousands of aircraft trajectories we desire to analyze.

In [5] Krumm and Horvitz detail Predestination, a system for inferring destinations
from partial trajectories. They utilize Bayesian inference to produce a probabilistic map
of potential destinations, which results in a median error of 3 to 5 km in predicting the
destination at the half-way point of a trip. Patterson et al. [6] applied machine learning
and a particle filter to GPS traces to predict a person’s destination, future route, and even
mode of transportation. This method is able to make good predictions for a few blocks into
the future in an urban environment, but unfortunately does not make accurate long-term
predictions. Simmons et al. [10] rely on information about a road network, in their task of
predicting driver routes and destinations. They generate a Hidden Markov Model (HMM)
of the routes and destinations visited by a driver, and then use the model to predict future
behavior. Our desire, however, is a more general method which does not rely on information
about an underlying network of roads or airways.

Researchers at Motorola [11] have also developed a system for learning routes from a
users travel data. Learned routes are stored in a database which can then be queried to
predict the destination of a current route. Based upon the predicted destination and future
route, appropriate traffic advisories can be sent to the user.

Chen et al. [1] developed a system for predicting future routes and destinations, but
rather than focus on vehicular trajectories, they collected real personal movement data from
a small set of participants, and mined this data to enable accurate predictions. Movement
data was first mined to extract a set of significant places from which destination and ori-
gin locations could be predicted. Next, the system extracted abstract movement patterns
from the training data. Finally, in a separate module the movement patterns were used to
construct a pattern tree, that is traversed to find matches to the live movement data. One
focus of their work was to predict both the future route and the destination in a unified
manner, unlike previous approaches for which the predicted route may not match well with
the predicted destination. The researchers showed their method could predict the destina-
tion of a user with 79.6% accuracy. Our method, however, is more general and does not
seek to handle or utilize the unique qualities of personal movement data.

3. Problem Definition. The problem we desire to solve is defined as follows. Given
a large-scale data set of historical trajectories, and without explicitly assuming anything

204 Efficient Destination Prediction

about the geographical limits placed on those trajectories (such as a road network), how
can the eventual destination of a new unfinished trajectory be accurately and efficiently
predicted? One key aspect of our problem is the scale. We desire to be able to train using
a database of at least 1 million trajectories each made up of 100 points, on average. Our
training should be efficient, and not require direct comparisons between every trajectory.
Training should only require hours, and predicting a single destination should take a fraction
of a second. Finally the prediction results should be relatively accurate.

4. Aircraft Trajectory Data. The United States FAA (Federal Aviation Adminis-
tration) makes available, to certain industry and research partners, position information for
most active flights in the National Airspace System (NAS). This data, known as Aircraft
Situation Display to Industry (ASDI), includes time-stamped position and velocity informa-
tion for each aircraft, and often other relevant values such as origin airport code, destination
airport code, and flight plan information. We have collected a large set of ASDI data which
we use to analyze our destination prediction method.

The raw ASDI data consists of millions of position reports (about 5 million for each day
of data in 2015). Each of these reports includes a flight call sign (such as DAL1835), but
there is no organization or division of the ASDI data into individual flights.

5. Our Approach. Our method predicts destinations by advancing through a series
of stages, including data cleaning, feature vector creation, R-tree building, similar trajectory
finding, and analysis. Each of these stages are described in detail below.

5.1. Cleaning The Data. As described in Section 4, the ASDI data is not organized
or divided into individual flights. We first group the ASDI data into position reports with
the same call sign, but further refinement is necessary, because the same call sign may be
used for a similar flight each day, or even different flights during the same day. A heuristic is
used to separate position reports for a given call sign into individual flights. The separation
criteria consists of three components: the maximum separation time between consecutive
position reports, the maximum separation distance between consecutive position reports
(unused for the analysis below), and the minimum number of position reports for a flight.
A time-sorted list of position reports for a given call sign is split into separate flights where
a time gap larger than the maximum separation time, or a distance gap larger than the
maximum separation distance is found. Further, if this splitting yields a set of position
reports whose size is less than the given minimum number, the set of position reports is
discarded. The result is about 45,000 separate trajectories for each day of ASDI data (in
2015).

Our data is now separated into a set of flight trajectories, with each flight trajectory
containing a set of position reports. Because of the noisiness of the data, we perform
another filtering step, using a heuristic to identify suspicious position reports in each flight
trajectory. A position report is considered suspicious if, (1) it occurs abnormally soon after
a previous position report, (2) its reported position is far away from the previously reported
position, (3) its reported altitude is far above or below the previously reported altitude, (4)
its reported altitude is below some threshold value (for example 0). All suspicious position
reports are removed from the flight trajectories.

In a final filtering step, we also discard any flight which now contains fewer than the
minimum number of position reports for a flight, any flight whose call sign indicates that it is
a general aviation flight, and any flight whose origin airport or intended destination airport
is invalid. Each position report includes the origin airport and the intended destination
airport. An airport is considered invalid if, (1) it is not reported, (2) it changes between
the first and last position reports, or (3) the actual trajectory start or end is not within 50

B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 205

km of the reported origin or intended destination. Removing flights with invalid airports
allows us to have unambiguous ground-truth data. There are many trajectories in our
data set, for example, which start or terminate abruptly due to technical difficulties, or at
the edge of the tracked space. Including these trajectories, which do not terminate at the
intended airports, yields degraded results. Similarly, removing general aviation traffic allows
us to concentrate on commercial and cargo air traffic. The result of this pre-processing is a
database of trajectories (about 11,000 for each day of 2015 data) which we can now use to
assist in destination prediction.

The output of this step is a set of trajectories where each trajectory is comprised of n+1
time-stamped points (x0, t0), (x1, t1), ..., (xn, tn), where xi is the position of point i. In our
example application of predicting aircraft destinations, the positions are latitude, longitude
pairs, however the our method also works for other coordinate systems.

5.2. Creating Feature Vectors. We desire to a way to succinctly summarize a tra-
jectory (or fraction of a trajectory). Combining a small set of normalized trajectory char-
acteristics into an N-dimensional feature vector will enable us to find similar trajectories in
and N-dimensional space, using traditional techniques.

Two issues must be overcome for this approach to work. First, an appropriate set of
trajectory characteristics to use in feature vector creation must be determined. Second, since
our goal is to predict the destinations of flights for which only a fraction of the trajectory
is given, the feature vectors created must allow for matching partial trajectories.

A wide variety of characteristics have been used to summarize trajectories in trajectory
analysis [7] applications such as finding similarly shaped trajectories, or identifying anoma-
lous trajectories. Often, characteristics for these applications are chosen such that they are
translation invariant. For the application of finding destinations, however, translation in-
variance is not desirable. Instead, trajectories which basically follow the same path, without
translation, must be found. To accomplish this, we choose a set of N sample points equally
spaced in time along the trajectory. The positions are determined by linear interpolation
(along the great circle path), when they are not aligned with an existing position report.
Each sample point contributes to the feature vector two values, the latitude and longitude
components of the position. These sample points provide a succinct representation of the
trajectory. The feature vector may also include additional values representative of the entire
trajectory, such as total flight duration. As an example, setting N to 4, and using a single
additional value of duration, yields a 9-dimensional feature vector.

To be able to match partial trajectories we simply create feature vectors for progressively
larger portions of each original trajectory. For example, feature vectors could be generated
for the first 1/4, the first half, and the first 3/4 of an original trajectory, generating 3
feature vectors from one trajectory. Creating feature vectors in this manner, enables better
destination prediction for trajectories of in-progress flights. Users may select a lower bound,
an upper bound, and a number of feature vectors per input trajectory as parameters to
control how feature vectors are generated. For even better results when large training data
sets are utilized, we select random-length portions of the original trajectory.

5.3. Building an R-tree. Next, the generated feature vectors are stored in a data
structure known as an R-tree [4]. An R-tree is a data structure which enables efficient
searching for nearest neighbors in multi-dimensional data. Our implementation builds upon
boost’s implementation of an R-tree, adding specialized find methods. For this stage of the
prediction process, we simply insert the feature vectors created for the input training data
set of trajectories into an instance of the R-tree data structure.

206 Efficient Destination Prediction

5.4. Finding Similar Trajectories. Now, given a new trajectory for which we desire
to predict a destination, we need only create a feature vector the trajectory (using the same
method described above), and find its K nearest neighbors in the R-tree. For each similar
trajectory i and j, a confidence value cij is generated to measures how well the trajectories
match. The confidence value is essentially the inverse of the distance between the points in
feature-space squared, and is computed using the following formula:

cij =
1.0

0.01 + dij
2 (5.1)

where dij is the distance between the feature vectors i and j.

5.5. Performing Analysis. The similar trajectories and associated confidence values
can now be analyzed to predict destinations. We describe two different methods of analysis
depending on the desired output, though many others could be utilized. For the first method,
we associate each trajectory in the data set with a destination airport code (i.e. LAX, for
Los Angeles International Airport). The confidence values of those trajectories (from the
set of similar trajectories found) with matching destination airport codes are summed. The
result is a weighted list of potential destination airport codes. From this list the trajectory
with the highest confidence can be reported as the expected destination. If multiple guesses
are allowed, we can proceed down the list until a threshold weight or number of guesses are
reached.

For applications where a set of potential destination locations (such as airports) is not
available, the actual expected destination position can be computed. This is accomplished
by taking the weighted spherical linear interpolation (slerp) [9] of the destination positions
of the similar trajectories found, using their associated confidence values as weights. The
result will be a point which is the weighted “geographic” mean of the candidate trajectory
destinations.

6. Results. We tested our destination prediction method with the Tracktable Trajec-
tory Analysis library [8]. Tracktable is an open source library which contains a core set of
functionality for ingesting, processing, plotting, and analyzing trajectories. We have sub-
sequently incorporated or prediction method into the library. This section describes the
parameters used, and the results obtained using our method to predict destinations of real
aircraft trajectories.

6.1. Parameters. Our data cleaning and destination prediction rely on several param-
eters. Table 6.1 lists these parameters, and the values used to obtain the results described
below. The first 5 parameters are used to filter out bad points and bad trajectories. The
next four parameters adjust how feature vectors are created for a trajectory, and how mul-
tiple feature vectors are generated for different fractions of an input trajectory. For this
analysis we use 4 position samples per trajectory, and an additional value, representing
the duration of the partial trajectory. Finally, the last parameter is used to determine the
number of nearest neighbors to utilize while finding similar trajectories.

6.2. Matching Trajectories. First, we show an example of our method successfully
finding several similar flights with a common destination. We select as a test trajectory the
path taken on an inter-island flight in Hawaii from Kona to Honolulu. Using only features
from the first half of this trajectory, and the duration of the first half of the flight, we
employ our method to find matches and predict the destination given a training set of only
8,636 trajectories spread across the United States. In Figure 6.1 the trajectories of the test
trajectory and 9 matching trajectories are plotted on a map of the Hawaiian Islands. As
with other figures in this work, the trajectories are plotted with lines whose color slowly

B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 207

Trajectory Splitting min trajectory length 20 samples
and Cleaning

max separation time 10 minutes
between consecutive points
min separation time 30 seconds
between consecutive points
max distance 60 nautical miles
between consecutive points
max altitude change 75,000 feet
between consecutive points
min altitude 0 feet
max distance between 50 km
airport and trajectory end

Feature Vector N (samples per trajectory) 4
Creation

additional value in duration
each feature vector
low 0.1, 0.2 for table data
high 1.0, 0.8 for table data
feature vectors per trajectory 10, 7 for table data

Prediction K (num nearest neighbors) 10

Table 6.1: Parameter values for cleaning data and predicting destinations

transitions from red, at the origin, to blue, at the destination. The matching trajectories all
depart from the Kona International Airport (KOA) and arrive at the Honolulu International
Airport (HNL), giving us a very high confidence that the intended destination of this flight
is the Honolulu airport. While this is a straight-forward example, since there are few other
likely destinations along this path in the vast ocean, it allows us to examine some aspects of
the method. First, notice that our method finds trajectories which follow the same general
path but can exhibit some variability. Also note that because our test trajectory is a partial
trajectory, utilizing only feature points along the first half of its total path, there is generally
more variation in the trajectories after the midway point. One flight, in particular juts out
to the north east just after the midway point. This trajectory would not have matched as
strongly had the test trajectory been slightly longer. Figure 6.2 similarly shows a successful
prediction for a flight from Seattle Washington to Portland Oregon. Notice how perfectly
the trajectories in the first half of the flight are aligned.

6.3. Mismatched Trajectories. As could be expected, matching a test trajectory is
not always so easy. Figure 6.3 shows a region of the western United States, with Wyoming
in the center, Utah on the left, and South Dakota in the upper right. Plotted are a test
trajectory for Sky West flight 125F departing Rapid City Regional Airport (RAP) in South
Dakota, and arriving at Salt Lake International Airport (SLC) in Utah, and the top 5
similar trajectories found using our method when using a training data set containing 21,569
trajectories of flights across the United States all on the same day, July 10, 2013. As
you can expect, the destination prediction for this case is a dismal failure, as none of the
matching trajectories even share the same destination. Notice that there are even matching
trajectories that fly the opposite direction of the test trajectory, from south to north. The

208 Efficient Destination Prediction

Fig. 6.1: An example of 9 flights used to accurately predict the destination of a test trajec-
tory, the first half of a flight from Kona to Honolulu Hawaii. (red=origin, blue=destination)

failure of our method in this case is likely due to insufficient training data. This appears
to be an uncommon route, perhaps flown only once a day, or less. If predictions are to
be accurately made on uncommon flights, such as this, our method requires more training
data, perhaps weeks or months of data.

6.4. Prediction Accuracy. We evaluate the accuracy of our method using one month
of historical trajectory data from July 2015. Cleaning the large data set results in 323,605
trajectories. We employ a leave-one-out approach for this analysis. One trajectory is left out
of the training data set, and then the destination for a random fraction of that trajectory
is predicted. This is repeated for each input trajectory, such that each is “left out” in turn.
By a random fraction of a trajectory we mean a partial trajectory starting at the origin
and extending to a point, a random temporal fraction of the way towards the destination.
Using only a fraction of the trajectory enables realistic testing of predicting destinations of
unfinished trajectories. The random fraction for this analysis is selected anywhere within
the same lower and upper bounds used for creating feature vectors (see Table 6.1 and note
we use 0.2 and 0.8 for the lower and upper values here). We find the 10 nearest neighbors,
and extract the destination airport codes from those matches. We then merge results for
identical airport codes, to obtain the top potential matches. Table 6.2 shows the results of
this analysis.

The results indicate that our method is able to obtain relatively good accuracy given a
large training data set. While for about 14% of the flights the destination was not able to
be predicted, over 64% of our top matches were correct. An additional 12% (76.7%) of the
second matches were correct, and nearly 86% of the destination were able to be correctly
predicted given up to 5 guesses.

A more detailed analysis is obtained by generating feature vectors for 10 random por-
tions of each trajectory in the data set, where each random portion extends from the origin

B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 209

Abu Dhabi

Dubai
Sharjah

Herat
Jalalabad

Kabul

Qandahar

Tirana

Yerevan

Huambo

Lobito

Luanda

Bahia Blanca

Catamarca

Cordoba

Corrientes

Formosa

Jujuy

La Plata

Mar del Plata

Mendoza

Neuquen

Parana

Posadas
Resistencia

Rosario

Salta

San Juan
Santa Fe

Santiago del Estero

Tucuman

Graz

Vienna

Adelaide

Brisbane

Canberra

Gold Coast

Hobart

Melbourne

Newcastle

Perth

Sydney

Wollongong

Baku

Banja Luka

Sarajevo

Barisal

Dhaka

Dinajpur

Khulna

Narayanganj

Narsingdi

Rajshahi

Rangpur

Tungi

Antwerp

Brussels

Charleroi

Gent

Bobo Dioulasso

Ouagadougou

Plovdiv

Sofia

Varna

Bujumbura

Abomey-Calavi
Cotonou

Djougou

Cochabamba

La Paz

Oruro

Sucre

Ananindeua

Anápolis

Aracaju

Barueri

Bauru

Belém

Belford Roxo

Belo HorizonteBetim

Blumenau

Boa Vista

Brasília

Campina Grande

Campinas

Campo Grande

Campos

Canoas

Carapicuíba

Cariacica

Caruaru

Cascavel

Caucaia

Caxias do Sul

Colombo

Contagem

Cuiabá

Curitiba

Diadema

Duque de Caxias

Embu

Feira de Santana

Florianópolis

Fortaleza

Foz do Iguaçu

Franca

Goiânia

Governador Valadares

Gravataí

Guarujá

Guarulhos

Hortolândia

Imperatriz

Ipatinga

Itabuna

Itapevi
Itaquaquecetuba

Jaboatão

Jacareí

João Pessoa

Joinville

Juazeiro do Norte

Juiz de Fora

Jundiaí

Limeira

Londrina

Macapá

Maceió

Magé

Manaus

Marília

Maringá

Mauá

Moji das Cruzes

Montes Claros

Mossoró

Natal

Niterói

Nova Iguaçu

Novo Hamburgo

Olinda

Osasco

Paulista

Pelotas

Petrópolis

Piracicaba

Ponta Grossa

Porto Alegre

Pôrto Velho

Praia Grande

Presidente Prudente

Recife

Ribeirão das Neves

Ribeirão Prêto

Rio Branco

Rio de Janeiro

Salvador

Santa Luzia

Santa Maria

Santo André

Santos

São Bernardo do Campo

São Carlos

São GonçaloSão João de Meriti

São José do Rio Prêto

São José dos Campos

São José dos Pinhais

São José

São Leopoldo

São Luís

São Paulo

São Vicente

Serra

Sete Lagoas

Sorocaba

Sumaré

Suzano
Taboão da Serra

Taubaté

Teresina

Uberaba

Uberlândia

Várzea Grande

Viamão

Vila Velha

Vitória da Conquista

Vitória

Volta Redonda

Nassau

Gaborone

Brest

Gomel

Hrodna

Minsk

Calgary

Edmonton

Halifax

Hamilton

Kitchener

London

Montreal

Oshawa

Ottawa

Quebec

Toronto

Vancouver

Victoria

Windsor

Winnipeg

Boma

Bukavu

Kananga

Kinshasa

Kisangani

Likasi

Lubumbashi

Mbuji-Mayi

Tshikapa

Bangui

Brazzaville

Zurich

Abidjan

Bouaké

Daloa Yamoussoukro

Antofagasta

Concepcion

Iquique

Rancagua

San Bernardo

Santiago

Talcahuano

Temuco

ValparaisoVina del Mar

Bafoussam

Bamenda

Bertoua

Douala

Edéa

Garoua

Kousséri

Maroua

Mokolo

Ngaoundéré

Yaoundé

Aksu

Anqing

Anshan

Anshun

Anyang

Baicheng

Baoding

Baoji

Beihai

Bengbu

Benxi

Cangzhou

Changchun

Changde

Changzhou

Chaoyang

Chaozhou

Chengde

Chengdu

Chifeng

Chongqing

Chuzhou

Dalian

Daliang

DandongDatong

Dezhou Dongying

Foshan

Fushun

Fuxin

Fuzhou

Ganzhou

Guangyuan

Guangzhou

Guilin

Guiyang

Haibowan

Haikou

Hailar

Handan

Hangu

Hangzhou

Harbin

Hebi

Hefei

Hegang

Hengshui

Hengyang

Heze

Hohhot

Huaibei

Huainan

Huaiyin

Huizhou

Hulan Ergi

Jiamusi

Jiangmen

Jiaojiang

Jiaozuo

Jiaxing

Jilin

Jinan

Jingdezhen

Jining

Jining

Jinxi

Jinzhou

Jiujiang

Jixi

Kaifeng

Kashi

Kunming

Langfang

Lanzhou

Laohekou

Liaocheng

Liaoyang

Linfen

Linxia

Liuzhou

Luancheng

Luohe

Luoyang

Luqiao

Luzhou

Maanshan

Maoming

Mianyang

Mudanjiang

Nanchang

Nanchong

Nanjing

Nanning

Nantong

Nanyang

Neijiang

Ningbo

Panzhihua

Peking

Pingdingshan

Pingxiang

Puyang

Qingdao

Qinhuangdao

Qiqihar

Qitaihe

Ranghulu

Rizhao

Rongcheng

Sanmenxia

Sanming

Shanghai

Shangrao

Shaoguan

Shaoxing

Shaoyang

Shashi

Shenyang

Shenzhen

Shihezi

Shiyan

ShuangyashanSuihua

Suzhou

Suzhou

Taian

Taiyuan

Taizhou

Tanggu

Tangshan

Tianjin

Tianmen

Tieling

Tongchuan

Tongliao

Tongling

Ürümqi

Weifang

Wenzhou

Wuhan

Wuhu

Wuxi

Wuxue

Wuzhou

Xiamen

Xiangfan

Xiantao

Xian
Xianyang

Xingtai

Xining

Xinpu

Xintai

Xinxiang

Xinyang

Xuanhua

Xuchang

Xuzhou

Yancheng

Yangjiang

Yangzhou

Yanji

Yantai

Yibin

Yichang

Yinchuan

Yingcheng

Yingkou

Yining

Yiyang

Yuci

Yueyang

Yuncheng

Zhangdian

Zhangjiakou

Zhangzhou

Zhanjiang

Zhaoqing

Zhenjiang

Zhongshan

Zhoukou

Zhuhai

Zhumadian

Zhuzhou

Zigong

Zunyi

Armenia

Barranquilla

Bello

Bogotá

Bucaramanga

Buenaventura

Cali

Cartagena

Cúcuta

Floridablanca

Ibagué

Itagüí

Manizales

Medellín

Montería

Neiva

Palmira

Pasto

Pereira

Santa Marta

Sincelejo

Soacha

Soledad

Valledupar

Villavicencio

San José

Camagüey

Guantánamo

Holguín
Las Tunas

Santa Clara

Santiago de Cuba

Brno

Ostrava

Prague

Aachen

Augsburg

Berlin

Bielefeld

Bochum

Bonn

Bremen

Brunswick

Chemnitz
Cologne

Dortmund

Dresden

Duisburg

Düsseldorf

Essen

Frankfurt

Freiburg

Gelsenkirchen Halle

Hamburg

Hanover

Karlsruhe

Kiel

Krefeld Leipzig

Lübeck

Magdeburg

Mannheim

Mönchengladbach

Munich

Münster

Nuremberg

Oberhausen

Stuttgart

Wiesbaden

Wuppertal

Jibuti

Århus

Copenhagen

La RomanaSan Pedro de Macorís

Santiago

Santo Domingo

Algiers

Constantine

Wahran

Cuenca

Guayaquil

QuitoSanto Domingo

Tallinn

Alexandria

Aswan

Asyut

Cairo

El Faiyûm

El Mahalla el Kubra

Gizeh

Ismailia

Luxor

Port Said

Qena

Sohag

Suez

Tanta

Asmara

A Coruña

BadalonaBarcelona

Bilbao

Cartagena

Córdoba

Fuenlabrada

Gijón

Granada

Las Palmas

Madrid

Málaga

Móstoles

Murcia

Palma

Sevilla

Valencia

Valladolid

Vigo

Vitoria

Zaragoza

Addis Abeba

Dire Dawa

Nazret

Espoo
Helsinki

Tampere

Bordeaux

Lyon

Marseille

Montpellier

Nantes

Nice

Paris

Rennes

Strasbourg

Toulouse

Libreville

Belfast

Birmingham

Bradford

Bristol
Cardiff

Coventry

Derby

Edinburgh

Glasgow

Kingston upon Hull
Leeds

LeicesterLeicester

Liverpool

London

Manchester

Nottingham

Plymouth

Reading

Sheffield

Southampton

Stoke-on-Trent

Wolverhampton

Tbilisi

Accra

Kumasi

Tamale

Tema

Serekunda

Conakry

Athens

Thessaloníki

Guatemala CityGuatemalaMixco
Villa Nueva

Bissau

Georgetown

San Pedro Sula

Tegucigalpa

Zagreb

CarrefourDelmasPort-au-Prince

Budapest Debrecen

Ambon

Balikpapan

Banda Aceh

Bandung

Banjarmasin

Bekasi

Bengkulu

Binjai

BogorCiampeaCibadak

Cilegon

Cileungsi

Cimahi

Ciputat

Cirebon

Denpasar

Depok

Jakarta

Jambi

Jember

Kediri

Kendari

Kupang

Loa Janan

Majalaya

Makasar

Malang

Manado

Mataram

Medan

Pacet

Padang

Palembang

Palu

Pekalongan

Pontianak

Purwakarta

Purwokerto

Rengasdengklok

Samarinda

Semarang
Sukabumi

Sumedang

Surabaya

Surakarta

Tambun
Tangerang

Tasikmalaya

Tegal

Yogyakarta

Dublin

Ashdod
Ashdod

Haifa

Jerusalem

Tel Aviv-Yafo

Agartala

Agra

Ahmadabad

Ahmadnagar

Aizawl

Ajmer

Akola

Aligarh

Allahabad

Alwar

Ambarnath

Ambattur

Amravati

Amritsar

Anantapur

Ara

Asansol

Aurangabad

Avadi

Bally

Bangalore

BaranagarBarasat

Barddhaman

Bareli

Belgaum

Bellary

Bhagalpur

Bharatpur

Bhatpara

Bhavnagar

Bhilai

Bhilwara

Bhiwandi

Bhopal

Bhubaneswar

Bidar

Bihar

Bijapur

Bikaner

Bilaspur

Bokaro

Bombay

Brahmapur

Burhanpur

Calcutta

Chandigarh

Chandrapur

Darbhanga

Dehra Dun

Delhi

Dewas

Dhanbad

Dhule

Dindigul

Durgapur

Durg

Etawah

Faridabad

Farrukhabad

Firozabad

Gandhinagar

Ganganagar

Gaya

Ghaziabad

Gorakhpur

Gulbarga

Guntur

GuwahatiGwalior

Haldia

Haora

Hapur

Hisar

Hubli

Hyderabad

Ichalkaranji

Imphal

Indore

Jabalpur

Jaipur

Jalandhar

Jalna

Jammu

Jamnagar

Jamshedpur

Jhansi

Jodhpur

Kakinada

Kalyan

Kamarhati

Kanpur

Karimnagar

Karnal

Kharagpur

Kochi

Kolhapur

Kollam

Korba

Kota

Kulti

Lakhnau

Latur

Ludhiana

Madras

Madurai

Maisuru

Malegaon

Mangaluru

Mathura

Mau

Mirzapur

Moradabad

Munger

Muzaffarnagar

Muzaffarpur

Nadiad

Nagercoil

Nagpur

Naihati

Nanded

New Delhi

Nizamabad

Pali

Panihati

Panipat

Parbhani

Patiala

Patna

Pimpri

Pondicherry

Pune

Raichur

Raipur

Rajamahendri

Rajkot
Rajpur

Rampur

RanchiRatlam

Raurkela

Rewa

Rohtak

Sagar

Saharanpur

Satna

Selam

Shahjahanpur

Shiliguri

Shimoga

Sholapur

Shrirampur

Sonipat

Srinagar

Surat

Thana

Thanjavur

Thiruvananthapuram

Thrissur

Tiruchchirappalli

Tirunelveli

Tirupati

Tiruppur

Tiruvottiyur

Tumkur

Ujjain

Ulhasnagar

Ulubaria

Vadodara

Varanasi

Vijayawada

Visakhapatnam

Warangal

Yamunanagar

Baghdad

Irbil

Kirkuk

Abadan

Ahvaz

Arak

Ardabil

Babol

Borujerd

Bukan

Dezful

Esfahan

Eslamshahr

Gorgan

Hamadan

Karaj

Kashan

Kerman

Kermanshah

Khomeynishahr

Khorramabad

Khorramshahr

Mashhad
Neyshabur

Orumiyeh

Qarchak

Qazvin

Qom

Rasht

Sabzevar

Sanandaj

Sari

Shiraz

Sirjan

Tabriz

Yazd

Zanjan

Bari

Bologna

Catania

Florence

Genoa

Messina

Milan

Naples

Padova

Palermo

Rome

Trieste

Turin

VeniceVerona

Kingston

Irbid

Ageo

Akashi

Akita

Amagasaki

Asahikawa

Atsugi
Chigasaki

ChofuFuchu

Fuji

Fujisawa

Fukuyama

Funabashi

Hachinohe

Hachioji

Hakodate

Hamamatsu
Himeji Hirakata

Hiratsuka

Hiroshima

Ibaraki

Ichihara

Ichikawa

Ichinomiya

Iwaki

Kakogawa

Kashiwa

Kasugai

Kasukabe
Kawagoe

Kawaguchi

Kawasaki

Kishiwada

Kitakyushu

Kobe

Koriyama

Koshigaya

Kurashiki

Kurume

Machida

Matsudo

Matsumoto

Nagoya

Neyagawa

Niigata

Nishinomiya

Numazu

Odawara

Okazaki

Sagamihara

Saitama

Sakai

Sasebo

Shimonoseki

Soka

SuitaTakarazuka

Takasaki

Takatsuki

Tokorozawa
Tokyo

ToyohashiToyonaka

Toyota

Yao

Yokkaichi

Yokosuka

Eldoret

Kisumu

Mombasa

Nairobi

Nakuru

Phnum Pénh

Seoul

Almaty

Aqtöbe

Astana

Öskemen

Pavlodar

Petropavl

Qostanay

Semey

Shymkent

Taraz

BayrutBeirut

Colombo

Monrovia

Kaunas

Vilnius

Riga

Benghazi

Misratah
Tarhunah

Tripoli

Agadir

Asfi

Casablanca

Fez

Kenitra

Marrakesh

Rabat

Tangier

Tétouan

Chisinau

Antananarivo

Toamasina

Skopje

Bamako

Bago

Mandalay

Mawlamyine

Pathein Rangoon

Ulaanbaatar

Nouakchott

Blantyre

Lilongwe

Acapulco

Aguascalientes

Apodaca

Campeche

Cancún

Celaya

Chihuahua

Chimalhuacán

Coacalco

Coatzacoalcos

Cuautitlán Izcalli

Cuernavaca

Culiacán

Durango

Ecatepec

Ensenada

General Escobedo

Gómez Palacio

Guadalajara

Guadalupe

Hermosillo

Irapuato

Ixtapaluca

Juarez

León

López Mateos

Los Mochis

Los Reyes

Matamoros

Mazatlán

Mérida

Mexicali

Mexico

Monterrey

Morelia

Naucalpan
Nezahualcóyotl

Nicolás Romero

Nuevo Laredo

Oaxaca

Obregon

Pachuca

Puebla

Querétaro

Reynosa

Saltillo

San Luis Potosí

San Nicolás de los Garza
Santa Catarina

Tampico
Tampico

Tehuacán

Tepic

Tijuana

Tlalnepantla

Tlaquepaque

Toluca

Tonalá

Torreón

Tuxtla Gutiérrez

Uruapan

Veracruz

Villahermosa

Xalapa

Xico

Zapopan

Alor Setar

Bukit Mertajam

Ipoh

Johor Bahru

Klang

Kota Bahru

Kota Kinabalu

Kuala Lumpur

Kuala Terengganu

Kuantan

Kuching

Miri

Petaling Jaya

Sandakan

Seremban

Shah Alam

Sungai Petani

Taiping

Tawau

Beira

Chimoio

MaputoMatola

Nacala

Nampula

Windhoek

Niamey

Niamey

Aba

Abeokuta
Akure

Bauchi

Bénin

Calabar

Damaturu

Ede

Enugu

Gombe

Gusau

Ibadan
Ife

Ikire

Ikorodu

Ikot Ekpene

Ilesha

Ilorin

Iseyin

Iwo

Jimeta

Jos

Kaduna

Kano

Katsina

Lagos

Maiduguri

Makurdi

Minna

Mubi

Ogbomosho

Ondo

Onitsha

Oshogbo

Owerri

Owo

Oyo

Port Harcourt

Shagamu

Sokoto

Ugep

UmuahiaWarri

Zaria

Managua

Amsterdam

Eindhoven

Rotterdam

The Hague

Tilburg

Utrecht

Bergen

Oslo

Kathmandu

Auckland

Christchurch

North Shore

Panamá
San Miguelito

Arequipa

Chiclayo

Chimbote

Cusco

Huancayo

Ica

Iquitos

Juliaca

Lima

Piura

Pucallpa

Tacna

Trujillo

Port Moresby

Angeles

Antipolo

Bacolod

Bacoor

Baguio

Batangas

Binangonan

Butuan

Cabanatuan

Cagayan de Oro

Cainta

Calamba

Cebu

Dadiangas

Dasmariñas

Davao

Iligan

Iloilo

Lapu-Lapu

Lipa Lucena

Makati

Mandaue

Manila

Olongapo

San Fernando

San Pablo

San PedroSanta Rosa

Taytay

Zamboanga

Bahawalpur

Chiniot

Dera Ghazi Khan

Faisalabad

Gujranwala

Gujrat

Hyderabad

Islamabad

Jhang

Karachi

Kasur

Lahore

Larkana

Mardan

Mingaora

Mirpur Khas

Multan

Nawabshah

Okara

Peshawar

Quetta

Rawalpindi

Sahiwal

Sargodha

Shekhupura

Sialkot

Sukkur

Wah

BialystokBydgoszcz

Cracow

Czestochowa

Gdansk

Gdynia

Katowice

Kielce

Lublin

Poznan

Radom

Sosnowiec

Szczecin

Torun

Warsaw

Wroclaw

Lisbon

Porto

AsunciónLuque
San Lorenzo

Doha

Braila

Brasov

Bucharest

Cluj-Napoca

Constanta

Craiova

Galati

Iasi
Oradea

Ploiesti

Timisoara

Belgrade

Pristina

Angarsk

Arkhangelsk

Astrakhan

Balakovo

Barnaul

Belgorod

Biysk

Blagoveshchensk

Bratsk

Bryansk

Cheboksary

Chelyabinsk

Cherepovets

Chita

Dzerzhinsk

Irkutsk

Ivanovo

Izhevsk

Kaliningrad

Kaluga

Kazan

Kemerovo

Khabarovsk

Kirov

Komsomolsk-na-Amure

Kostroma

Krasnodar

Krasnoyarsk

Kurgan

Kursk

Lipetsk

Magnitogorsk

Makhachkala

Moscow

Murmansk

Nalchik

Nizhnekamsk

Nizhnevartovsk

Nizhniy Novgorod

Nizhniy Tagil

Novokuznetsk

Novorossiysk

NovosibirskOmsk

Orël

Orsk

Penza

Perm

Petrozavodsk

Prokopyevsk

Pskov

Rostov-na-Donu

Ryazan

Rybinsk

Saint Petersburg

Samara

Saransk

Saratov

Shakhty

Smolensk

Sochi

Staryy Oskol

Stavropol

Sterlitamak

Surgut

Syktyvkar

Taganrog

Tambov

Tolyatti

Tomsk

Tula

Tver

Tyumen

Ufa

Ulan-Ude

Ulyanovsk

Velikiy Novgorod

Vladikavkaz

Vladimir

Vladivostok

Volgograd

Vologda

Volzhskiy

Voronezh

Yaroslavl

Yekaterinburg

Zelenograd

Kigali

Buraydah

Jiddah
Mecca

Riyadh

Tabuk

Kassala
Khartoum

Kusti

Umm Durman

Wad Madani

Göteborg

Malmö

Stockholm

Singapore

Ljubljana

Bratislava

Kosice

Freetown

Dakar

Kaolack

Thiès

Ziguinchor

Berbera

Hargeysa

Kismayo

Mogadishu

Paramaribo

San SalvadorSoyapango

Aleppo

Damascus

Bangkok

Chiang Mai

Chon Buri

Nakhon Ratchasima

Nonthaburi

Samut Prakan

Udon Thani

Dushanbe

Asgabat

Türkmenabat

Aryanah

Safaqis

Tunis

Adana

Ankara

Antalya

Batman

Bursa

Çorlu

Denizli

Erzurum

Esenyurt

Eskisehir

Gaziantep

Gebze

Istanbul

Izmir

Kahramanmaras

Kayseri

Konya

Malatya

Manisa

Mersin

Osmaniye

Samsun

Sivas

Tarsus

Trabzon

Urfa

Van

Chungho

Fengshan

Hsichih

Hsinchu

Hsintien

KaohsiungKaohsiung

KeelungLuchouPanchiao
Pingchen

Pingtung

Sanchung

Taichung

Tainan

TaipeiTaoyüanTuchengYungho

Yungkang

Arusha

Dar es Salaam

Mbeya

Morogoro

Mwanza

Tanga

Zanzibar

Cherkasy

Chernihiv

Chernivtsi
Horlivka

Kherson

Kiev

Kirovohrad

Kremenchuk

Kryvyy Rih

Lvov

Makiyivka

Odesa

Poltava

Rivne

Sumy

VinnitsaVinnytsya

Zaporizhzhya

Zhytomyr

Kampala

Birmingham

Anchorage

Chandler

Glendale
MesaPhoenix

Scottsdale

Tucson

Anaheim

Bakersfield

Chula Vista

Fremont

Fresno

Glendale

Long Beach

Los Angeles

Modesto

Oakland

Riverside

Sacramento

San Bernardino

San Diego

San Francisco

San Jose

Santa Ana

Stockton

Aurora

Colorado Springs

Denver

Washington

Hialeah

Jacksonville

Miami

Orlando

Saint Petersburg

Tampa

Atlanta

Honolulu

Chicago

Fort Wayne

Indianapolis

Kansas City

Wichita

Lexington-Fayette

Louisville

Baton Rouge

New Orleans

Baltimore

BostonDetroit

MinneapolisSaint Paul

Kansas City

Saint Louis

Lincoln

Omaha

Henderson

Las Vegas
Paradise

Reno

Jersey CityNewark

Albuquerque

Buffalo

New York

Rochester

Charlotte

Durham
Greensboro

Raleigh

Akron

Cincinnati

Cleveland

Columbus

Toledo

Oklahoma City

Tulsa

Portland

Philadelphia

Pittsburgh

San Juan

Memphis

Nashville

Arlington

Austin

Corpus Christi

Dallas

El Paso

Fort Worth

Garland

Houston

Laredo

Lubbock

Plano

San Antonio

ChesapeakeNorfolkVirginia Beach

Seattle

Madison Milwaukee

Montevideo

Andijon

Namangan

Nukus

Samarkand

Tashkent

Barcelona

Barinas

Barquisimeto

BarutaCabimas
Caracas

Ciudad Bolívar

Ciudad Guayana

Cumaná

Maracaibo

Maracay

Maturín

Petare

San Cristóbal

Santa TeresaTurmeroValencia

Biên Hòa

Can Tho

Da Nang

Hai Phong

HanoiHa Noi

Ho Chi Minh City

Hue

Nha Trang

Qui Nhon

Rach Gia

Vung Tau

Aden

Ibb

Alberton
Benoni

Bloemfontein

Boksburg

Botshabelo

Brakpan

Cape Town

Durban

East London

Johannesburg
Krugersdorp

Newcastle

Pietermaritzburg

Port Elizabeth

Pretoria

Richards Bay

Soweto

Tembisa

Uitenhage

VanderbijlparkVereeniging

Verwoerdburg

Welkom

Witbank

Kitwe

Lusaka

Ndola

Bulawayo

Chitungwiza

Gweru

Harare

Mutare

Fig. 6.2: An example of 10 flights used to accurately predict the destination of a test tra-
jectory, the first half of a flight from Seattle, Washington to Portland, Oregon. (red=origin,
blue=destination)

Number Accuracy
Not Matched 44,390 13.7%
Top Match 208,439 64.4%
Within Top 2 Matches 248,316 76.7%
Within Top 5 Matches 276,756 85.5%
Within Top 10 Matches 279,215 86.2%

Table 6.2: Accuracy given 1 months worth of historical aircraft trajectories, for a first
random fraction for each left out trajectory.

to 10 to 100% of the way to the destination (low=0.1, high=1.0). We again employing a
leave-one-out analysis, and predict the destinations of 10 random portions of each trajectory
also extending from the origin to 10 to 100% of the way towards the destination. Figure 6.4
shows the results of this analysis where each data point is the number of correct predictions
for all the random samples of a given percentage of flight length, for various numbers of top
matches.

The figure shows that half way through a flight the correct destination can be predicted
as the top match 63% of the time, and in the top 5 matches 85% of the time. There is also
little difference between using the top 5 and top 10 matches, suggesting that fewer than 10
matches could be computed, with minimal impact. The rise at the beginning of the plot is
likely a boundary effect, since there are no feature vectors generated for the first 10% of the
flights.

210 Efficient Destination Prediction

Abu Dhabi

DubaiSharjah

Kabul

Qandahar

Tirana

Yerevan

Luanda

Cordoba

Corrientes

La Plata

Mar del Plata

Mendoza

Neuquen

PosadasResistencia

Rosario

Salta

San Juan Santa Fe

Santiago del Estero

Tucuman

Vienna

Adelaide

Brisbane

Canberra

Gold Coast

Melbourne

Newcastle

Perth

Sydney

Baku

Sarajevo

Dhaka

Khulna

Rajshahi

Tungi

Antwerp

Brussels

Bobo Dioulasso

Ouagadougou

Plovdiv

Sofia

Varna

Bujumbura

Abomey-CalaviCotonou

Cochabamba

La Paz

Ananindeua

Anápolis

Aracaju

Bauru

Belém

Belford Roxo

Belo HorizonteBetim

Brasília

Campina Grande

Campinas

Campo Grande

Campos

Canoas

Carapicuíba

Cariacica

Caxias do Sul

Contagem

Cuiabá

Curitiba

Diadema

Duque de Caxias

Feira de Santana

Florianópolis

Fortaleza

Franca

Goiânia

Guarujá

GuarulhosItaquaquecetuba

Jaboatão

João Pessoa

Joinville

Juiz de Fora

JundiaíLondrina

Macapá

Maceió

Manaus

Maringá
Mauá

Moji das Cruzes

Montes Claros

Natal

Niterói
Nova Iguaçu

Olinda

Osasco

Pelotas

Piracicaba

Porto Alegre

Pôrto Velho

Recife

Ribeirão das Neves

Ribeirão Prêto

Rio de Janeiro

Salvador

Santo André
Santos

São Bernardo do Campo

São GonçaloSão João de Meriti

São José do Rio Prêto

São José dos Campos

São Luís

São Paulo

São Vicente

Serra

Sorocaba

Teresina

Uberlândia

Vila VelhaVitória

Brest

Gomel

Hrodna
Minsk

Calgary

Edmonton

Hamilton
Kitchener

London

MontrealOttawa

Quebec

Toronto

Vancouver

Winnipeg

Boma Kananga

Kinshasa

Kisangani

Likasi

Lubumbashi

Mbuji-Mayi

Bangui

Brazzaville

Zurich

Abidjan

Bouaké

Antofagasta

Santiago

Bamenda

Douala

Garoua

Kousséri

Maroua

Yaoundé

Aksu

Anqing

Anshan

Anshun

Anyang

Baicheng

Baoding

Baoji

Bengbu

Benxi

Cangzhou

Changchun

Changde

Changzhou

Chaoyang

Chaozhou

Chengde

Chengdu

Chifeng

Chongqing

Dalian

DandongDatong

Dezhou Dongying

Foshan

Fushun

Fuxin

Fuzhou

Guangzhou

Guilin

Guiyang

Haikou

Handan

Hangzhou

Harbin

Hefei

Hegang

Hengshui

Hengyang

Hohhot

Huaibei

Huainan

Huaiyin

Jiamusi

Jiangmen

Jiaojiang

Jiaozuo

Jiaxing

Jilin

Jinan

Jingdezhen

Jining

Jinxi

Jinzhou

Jixi

Kaifeng

Kunming

Langfang

Lanzhou

Liaoyang

Liuzhou

Luancheng

Luohe

Luoyang

Luqiao

Maanshan

Maoming

Mudanjiang

Nanchang

Nanjing

Nanning

Nantong

Neijiang

Ningbo

Panzhihua

Peking

Pingdingshan

Pingxiang

Puyang

Qingdao

Qinhuangdao

Qiqihar

Qitaihe

Rongcheng

Sanmenxia

Shanghai

Shangrao

Shaoguan

Shaoxing

Shaoyang

Shashi

Shenyang

Shenzhen

Shihezi

Shiyan

Suzhou

Taian

Taiyuan

Taizhou

Tanggu

Tangshan

Tianjin

Tieling

Tongling

Ürümqi

Weifang

Wenzhou

Wuhan

Wuhu

Wuxi

Xiamen

Xiangfan

XianXianyang

Xingtai

Xining

Xinpu

Xinxiang

Xinyang

Xuanhua

Xuchang
Xuzhou

Yancheng

Yangjiang

Yangzhou

Yanji

Yantai

Yichang

Yinchuan

Yingkou

Yueyang

Zhangdian

Zhangjiakou

Zhangzhou

Zhanjiang

Zhaoqing

Zhenjiang

Zhongshan

Zhoukou

Zhuhai

Zhuzhou

Zigong

Zunyi

Armenia

Barranquilla

Bello

Bogotá

Bucaramanga

Cali

Cartagena

Cúcuta

Ibagué

Manizales

Medellín

Neiva

Pasto

Pereira

Santa Marta

Soacha

Soledad

Valledupar

Villavicencio

San José

Camagüey

Holguín

Santiago de Cuba

Brno

Ostrava

Prague

Berlin

Bielefeld

Bochum

Bonn

Bremen

Cologne

Dortmund

Dresden

Duisburg
Düsseldorf

Essen

Frankfurt

Hamburg

Hanover

Leipzig

Mannheim

Munich

Nuremberg

Stuttgart

Wuppertal

Jibuti

Copenhagen

Santiago

Santo Domingo

Algiers

Constantine

Wahran

Guayaquil

Quito

Tallinn

Alexandria

Asyut

Cairo

El Faiyûm

El Mahalla el Kubra

Gizeh

Luxor

Port Said

Suez

Tanta

Asmara

Barcelona

Bilbao

Córdoba

Las Palmas

Madrid

Málaga

Murcia

Palma

Sevilla

Valencia

Valladolid Zaragoza

Addis Abeba

Helsinki

Lyon

Marseille

Nice

Paris

Toulouse

Libreville

Belfast

Birmingham

BristolCardiff

Coventry

Edinburgh
Glasgow

Kingston upon HullLeeds

LeicesterLeicester

Liverpool

London

Manchester
Sheffield

Tbilisi

Accra

Kumasi

Tamale

Tema

Conakry

Athens

Thessaloníki

Guatemala CityGuatemalaMixcoVilla Nueva

Bissau

San Pedro Sula

Tegucigalpa

Zagreb

CarrefourDelmasPort-au-Prince

Budapest

Ambon

Balikpapan

Bandung

Banjarmasin

Bekasi

Bengkulu

BogorCimahi

Denpasar

Depok
Jakarta

Jambi

Makasar

Malang

Manado

Mataram

Medan

Pacet

Padang

Palembang

Pontianak

Samarinda

Semarang
Surabaya

Surakarta

TambunTangerang

Yogyakarta

Dublin

Jerusalem

Tel Aviv-Yafo

Agra

Ahmadabad

Ahmadnagar

Ajmer

Akola

Aligarh

Allahabad

Ambattur

Amravati

Amritsar

Asansol

Aurangabad

Bangalore

Barddhaman

Bareli

Belgaum

Bellary

Bhagalpur

Bhatpara

Bhavnagar

Bhilai

Bhilwara

Bhiwandi

Bhopal

Bhubaneswar

Bikaner

Bokaro

Bombay

Brahmapur

Calcutta

Chandigarh

Chandrapur

Dehra Dun

Delhi

Dhule

Durgapur

Faridabad

Firozabad

Gaya

Ghaziabad

Gorakhpur

Gulbarga

Guntur

GuwahatiGwalior

Haora

Hubli

Hyderabad

Indore

Jabalpur

Jaipur

Jalandhar

Jammu

Jamnagar

Jamshedpur

Jhansi

Jodhpur

Kalyan

Kamarhati

Kanpur

Kochi

Kolhapur

Kollam

Korba

Kota

Kulti

Lakhnau

Latur

Ludhiana

Madras

Madurai

Maisuru

Malegaon

Mangaluru

Mathura

Moradabad

Muzaffarnagar

Muzaffarpur

Nagpur

Nanded

New Delhi

Nizamabad

Panihati

Patiala

Patna

PimpriPune

Raipur

Rajamahendri

Rajkot Rajpur

Ranchi

Rohtak

Saharanpur

Selam

Shahjahanpur

Shiliguri

Shimoga

Sholapur

Srinagar

Surat

Thana

Thiruvananthapuram

Thrissur
Tiruchchirappalli

Tirunelveli

Tiruppur

Tumkur

Ujjain

Ulhasnagar

Vadodara

Varanasi

Vijayawada

Visakhapatnam

Warangal

Baghdad

Irbil

Kirkuk

Abadan

Ahvaz

Arak

Ardabil

Esfahan

Eslamshahr

Hamadan

Karaj

Kashan

Kerman

Kermanshah

Khorramabad

Khorramshahr

Mashhad

Orumiyeh

Qazvin

Qom

Rasht

Sanandaj

Shiraz

Tabriz

Yazd

Zanjan

Bari

Bologna

Catania

Florence

Genoa

Milan

Naples

Palermo

Rome

Turin

Kingston

Akita

Amagasaki

Asahikawa

Fujisawa

Fukuyama

FunabashiHachioji

Hamamatsu
Himeji Hirakata

Hiroshima

Ichikawa

Iwaki

KashiwaKawagoeKawaguchi

Kawasaki

Kitakyushu

Kobe

Koriyama

Koshigaya

Kurashiki

Machida
Matsudo

Nagoya

Niigata

Nishinomiya
Okazaki

Sagamihara

Saitama

Sakai
SuitaTakatsuki

TokorozawaTokyo

ToyohashiToyonaka

Toyota
Yokosuka

Mombasa

Nairobi

Phnum Pénh

Seoul

Almaty

Astana

Öskemen

Pavlodar

Shymkent

Taraz

BayrutBeirut

Colombo

Monrovia

Kaunas
Vilnius

Riga

Benghazi
Misratah

Tripoli

Agadir

Asfi

Casablanca

Fez
Kenitra

Marrakesh

Rabat

Tangier
Tétouan

Chisinau

Antananarivo

Skopje

Bamako

Mandalay

Mawlamyine
Rangoon

Ulaanbaatar

Nouakchott

Blantyre

Lilongwe

Acapulco

Aguascalientes

Apodaca

Cancún

Celaya

Chihuahua

Chimalhuacán
CoacalcoCuautitlán Izcalli

Cuernavaca

Culiacán

Durango

Ecatepec

General Escobedo

Guadalajara

Guadalupe

Hermosillo

Irapuato

Ixtapaluca

Juarez

León

López Mateos

Matamoros

Mazatlán

Mérida

Mexicali

Mexico

Monterrey

Morelia
NaucalpanNezahualcóyotl

Nuevo Laredo

Pachuca

Puebla

Querétaro

Reynosa

Saltillo

San Luis Potosí

San Nicolás de los Garza

TampicoTampico

Tijuana

Tlalnepantla

Tlaquepaque

Toluca

Tonalá

Torreón

Tuxtla Gutiérrez

Veracruz

Villahermosa

Xalapa
Xico

Zapopan

Ipoh

Johor Bahru

Klang

Kota Kinabalu

Kuala Lumpur

Kuantan

Kuching

Petaling Jaya

Sandakan

Seremban

Shah Alam

Tawau

Beira

MaputoMatola

Nampula

Niamey
Niamey

Aba

Abeokuta Akure

Bauchi

Bénin

Calabar

Enugu

IbadanIfe

Ikorodu

Ilorin

Iseyin

Jos

Kaduna

Kano

Katsina

Lagos

Maiduguri

Ogbomosho

Onitsha

OshogboOyo

Port Harcourt

Sokoto

Warri

Zaria

Managua

Amsterdam

Rotterdam
The Hague

Oslo

Kathmandu

Auckland

Christchurch

PanamáSan Miguelito

Arequipa

Chiclayo

Chimbote

Cusco

Huancayo

Iquitos

Lima

Piura

Pucallpa
Trujillo

Antipolo

Bacolod

Bacoor

Cagayan de Oro

Calamba

Cebu

Dadiangas

Dasmariñas

Davao

Iloilo

MakatiManila

Zamboanga

Bahawalpur

Faisalabad

Gujranwala

Gujrat

Hyderabad

Islamabad

Jhang

Karachi

Lahore

Larkana

Mardan

Multan

Peshawar

Quetta

Rawalpindi

Sargodha

Shekhupura

Sialkot

Sukkur

Bydgoszcz

Cracow

Gdansk

Katowice

Lublin

Poznan

Szczecin

Warsaw

Wroclaw

Lisbon

Asunción

Doha

Bucharest

Cluj-Napoca

Constanta
Craiova

Iasi

Timisoara

Belgrade

Arkhangelsk

Astrakhan

Barnaul

Belgorod

Bryansk

Cheboksary

Chelyabinsk

Cherepovets

Chita

Irkutsk

Ivanovo
Izhevsk

Kaliningrad
Kaluga

Kazan

Kemerovo

Khabarovsk

Kirov

Krasnodar

Krasnoyarsk

Kurgan

Kursk

Lipetsk

Magnitogorsk

Makhachkala

Moscow

Murmansk

Nizhniy Novgorod

Nizhniy Tagil

Novokuznetsk

NovosibirskOmsk

Orël

Penza

Perm

Rostov-na-Donu

Ryazan

Saint Petersburg

Samara

Saransk

Saratov

Smolensk

Sochi

Stavropol

Surgut

Tolyatti

Tomsk

Tula

Tver

Tyumen

Ufa

Ulan-Ude

Ulyanovsk

Vladikavkaz

Vladimir

Vladivostok

VolgogradVolzhskiy

Voronezh

Yaroslavl

Yekaterinburg

Kigali

Buraydah

JiddahMecca

Riyadh

Tabuk

Kassala
Khartoum

Kusti

Umm Durman

Wad Madani

Göteborg

Stockholm

Singapore

Bratislava

Freetown

Dakar
Thiès

Hargeysa

Mogadishu

San SalvadorSoyapango

Aleppo

Damascus

BangkokNonthaburi
Samut Prakan

Dushanbe

Asgabat

Tunis
Adana

Ankara

Antalya

Batman

Bursa

Denizli

Erzurum
Eskisehir

Gaziantep

Istanbul

Izmir

Kahramanmaras

Kayseri

Konya

Malatya

Mersin

Samsun

Urfa

Van

Chungho

Fengshan

Hsinchu

KaohsiungKaohsiung

KeelungPanchiaoSanchung

Taichung

Tainan

TaipeiTaoyüanTucheng

Arusha

Dar es Salaam

Mwanza

Zanzibar

Chernihiv

Kherson

Kiev

Kryvyy Rih

Lvov

Makiyivka

Odesa

Poltava

VinnitsaVinnytsya

Zaporizhzhya

Kampala

MesaPhoenix

Tucson

Anaheim

Fresno

Long Beach

Los Angeles

Oakland

Sacramento

San Diego

San Francisco

San Jose

Santa Ana

Colorado Springs

Denver

Washington

Jacksonville

Miami

Tampa

Atlanta

Honolulu

Chicago

Indianapolis

Kansas City

Wichita

New Orleans

Baltimore

BostonDetroit

Minneapolis

Kansas City

Saint Louis

Omaha

Las Vegas

Albuquerque

New York

Charlotte

Raleigh

Cincinnati

Cleveland

Columbus

Toledo

Oklahoma City

Tulsa

Portland

Philadelphia

Pittsburgh

San Juan

Memphis

Nashville

Arlington

Austin

Dallas

El Paso

Fort Worth

Houston

San Antonio

Virginia Beach

Seattle

Milwaukee

Montevideo

Andijon

Namangan

Samarkand

Tashkent

BarcelonaBarquisimeto

Caracas

Ciudad Guayana

Maracaibo

Maracay

Maturín

Petare
TurmeroValencia

Biên Hòa

Da Nang

Hai Phong
HanoiHa Noi

Ho Chi Minh City

Aden

Benoni

Bloemfontein

Boksburg

Botshabelo

Brakpan

Cape Town

Durban

East London

JohannesburgKrugersdorp

Newcastle

Pietermaritzburg

Port Elizabeth

Pretoria

Soweto
Tembisa

Vereeniging

Welkom

Kitwe

Lusaka

Ndola

Bulawayo

Chitungwiza
Harare

Fig. 6.3: An example where our prediction method fails. A test trajectory from Rapid City
to Salt Lake City is plotted, as well as the top 5 matching, which show little similarity due
to a lack of training data. (red=origin, blue=destination)

10 20 30 40 50 60 70 80 90 100
Percent of Flight Complete

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
e
rc

e
n
t

o
f

C
o
rr

e
ct

 P
re

d
ic

ti
o
n
s

Prediction Accuracy

Within Top 10 Matches
Within Top 5 Matches
Within Top 2 Matches
Top Match

Fig. 6.4: Accuracy obtained using various numbers of top matches, employing the leave-
one-out method.

B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson 211

7. Future Work and Conclusion. We have described our novel method for pre-
dicting destinations of incomplete trajectories by finding similar trajectories in a a high-
dimensional space populated with feature vectors derived from historical trajectories. Our
method is efficient, in that it does not need to directly compare the new trajectory to all
historical trajectories, and it is relatively accurate, given a large data set.

Several aspects of our method could be improved with further effort. Accuracy could
likely be improved by utilizing the Hausdroff Distance Algorithm or other similarity al-
gorithms to further refine predictions once a small set of candidates are identified. Also,
our method is highly parallelizable, and we are working towards efficiently using multiple
processors to speed-up the processing stages, and R-tree look-up.

Data scientists deal with large data sets of trajectories, where similar trajectories are
often traveled from a set of common origin and destination points, they now have a new
tool to efficiently predict probable destinations of unfinished trajectories. We hope that this
new method will enable further progress in analyzing and predicting behaviors in various
data sets.

REFERENCES

[1] L. Chen, M. Lv, and G. Chen, A system for destination and future route prediction based on trajectory
mining, Pervasive Mob. Comput., 6 (2010), pp. 657–676.

[2] Y. Deguchi, K. Kuroda, M. Shouji, and T. Kawabe, Hev charge/discharge control system based on
navigation information, in SAE Convergence International Congress and Exposition On Trans-
portation Electronics, Detroit, Michigan USA, 2004.

[3] J. Froehlich and J. Krumm, Route prediction from trip observations, in Society of Automotive
Engineers (SAE) 2008 World Congress, 2008.

[4] A. Guttman, R-trees: A dynamic index structure for spatial searching, SIGMOD Rec., 14 (1984),
pp. 47–57.

[5] J. Krumm and E. Horvitz, Predestination: Inferring destinations from partial trajectories, in Pro-
ceedings of the 8th International Conference on Ubiquitous Computing, UbiComp’06, Berlin,
Heidelberg, 2006, Springer-Verlag, pp. 243–260.

[6] D. Patterson, L. Liao, D. Fox, and H. Kautz, Inferring high-level behavior from low-level sensors,
in UbiComp 2003: Ubiquitous Computing, A. Dey, A. Schmidt, and J. McCarthy, eds., vol. 2864
of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2003, pp. 73–89.

[7] M. D. Rintoul and A. T. Wilson, Trajectory analysis via a geometric feature space approach, to
appear in Statistical Analysis and Data Mining, (2016).

[8] Sandia National Labs, Tracktable, 2015. http://tracktable.sandia.gov.
[9] K. Shoemake, Animating rotation with quaternion curves, SIGGRAPH Comput. Graph., 19 (1985),

pp. 245–254.
[10] R. Simmons, B. Browning, Y. Zhang, and V. Sadekar, Learning to predict driver route and desti-

nation intent, in Intelligent Transportation Systems Conference, 2006. ITSC ’06. IEEE, Sept 2006,
pp. 127–132.

[11] K. Torkkola, K. Zhang, H. Li, H. Zhang, C. Schreiner, and M. Gardner, Traffic advisories
based on route prediction, in Workshop on Mobile Interaction with the Real World (MIRW 2007),
Singapore, 2007.

CCR Summer Proceedings 2015 212

UNCERTAINTY QUANTIFICATION OF THE INTERFACIAL MASS
TRANSFER MODEL IN CTF

NATHAN W. PORTER∗ AND VINCENT A. MOUSSEAU†

Abstract. This work analyzes the uncertainty of the bulk mass transfer model in the legacy ther-
mal hydraulic subchannel code Coolant Boiling in Rod Arrays - Three Field (COBRA-TF). The authors’
contribution to the existing code documentation is presented, with focus on the inherent difficulty of work-
ing with legacy codes - particularly when performing verification, validation and uncertainty quantification
(VVUQ). Black box uncertainty quantification methods are very limiting because they ignore many numeri-
cal parameters that may contribute significantly to the simulation uncertainty. Uncertainty quantification of
these numerical parameters (flow regime map, spatial smoothing, under relaxation, etc.) will require future
work. An example of holistic uncertainty analysis is demonstrated for a single correlation using Bayesian
calibration. This method allows the experimental data from many sources to directly inform correlation
uncertainty, which can be directly incorporated into a simulation tool.

1. Introduction. COBRA-TF is a thermal hydraulic subchannel code that uses eight
conservation equations to solve models of light water reactor (LWR) in-core geometries. The
entrained liquid is assumed to be at thermal equilibrium with the continuous liquid, so there
is no energy equation for the droplet phase. The code has extensive models for a variety
of thermal hydraulic phenomena and has been used throughout industry and academia to
model a large number of reactor problems. This code was originally developed as part of
COBRA/TRAC at Pacific Northwest National Laboratory in 1980 [15]. CTF is one of the
many versions that have evolved from the original and is developed by Pennsylvania State
University (PSU) and the Consortium for Advanced Simulation of LWRs (CASL) [14].

Codes written the 1970’s and 1980’s, like CTF, are often referred to as “legacy” codes
in the nuclear industry. These were designed decades ago when computational limitations
required a large number of simplifications. It is well known that these simplifications are not
generally applicable and that they introduce significant amounts of uncertainty. Creation
of a new code is an expensive and time-consuming endeavor; modernizing a legacy code is
often preferred, but this process presents a variety of unique challenges.

These codes were originally developed to provide insight to nuclear design and operation,
often using conservative models to ensure reactor safety. More recently, regulators have
started to accept best estimate plus uncertainty (BEPU) methods, where the conservative
assumptions are replaced by uncertainty quantification and the results are bounded by a
95% uncertainty interval. Analyzing a legacy code in this way can require significant work
because it is not consistent with the intended use of the code. This work demonstrates some
of these issues using the interfacial mass transfer model in CTF as a specific example.

This document will first provide a brief introduction to uncertainty analysis methods.
Next, the interfacial mass transfer model used by CTF is discussed. Sensitivity studies will
be used to demonstrate that black box uncertainty methodologies are very limiting. Finally,
an alternative approach for uncertainty analysis will be demonstrated for a single correlation
in the interfacial mass transfer model.

2. Uncertainty Analysis. Uncertainty in a computational tool originates from a va-
riety of sources, which can be grouped into four general categories: code bugs, numerical
uncertainty, model form uncertainty, and parameter/correlation uncertainty.

The uncertainty from code bugs is minimized using thorough regression testing, where
test problems are each designed to confirm that a very small section of code is working

∗Pennsylvania State University Department of Mechanical and Nuclear Engineering, nwp110@psu.edu
†Sandia National Laboratories, vamouss@sandia.gov

N.W. Porter and V.A. Mousseau 213

correctly. To assess numerical error, code solutions are first compared to known solutions to
ensure that the numerical method is correctly implemented. Then the error introduced by
the mesh and time step can be quantified. If the bug or numerical uncertainty is dominant,
the study of other uncertainty contributions can be meaningless. Large uncertainties can
also be introduced when the fundamental assumptions of a model and a simulation are not
consistent. These uncertainties are estimated by comparing code results to experimental
validation tests.

Once the code has a suite of regression, verification and validation tests, the final source
of uncertainty can be addressed. Parameter uncertainty deals with the error introduced
to the code by using a specific correlation. This includes experimental error, any incorrect
or generalized scaling arguments, and also assumptions made in the experimental setup
that are inconsistent with the code. Traditionally, uncertainty quantification studies focus
only on parameter uncertainty and make the assumption that the other contributions are
small. This may be true in some cases, but the generalization cannot be made without first
quantifying all uncertainty sources.

Previous uncertainty quantification efforts for CTF have assumed that parameter un-
certainty is the only large contribution and used “black box” approaches, where the inner-
workings of the code are treated as unimportant [10] [11]. One such method is the application
of Wilk’s formula [16], which provides the code user with a specified number of code runs to
get a 95% confidence of the 95% distribution of an output parameter. This method is very
enticing because it is simple, computationally inexpensive, requires no detailed knowledge
of the code, and the user has freedom to set input uncertainties. This method can provide
a meaningful first estimate of code uncertainty, but its use implies a number of assumptions
that are not generally applicable to nuclear codes.

• The code does not crash.
• Input uncertainty distributions can be sampled.
• All input parameters are studied.
• The code has no inherent biases.

Since these assumptions are not always satisfied when using nuclear codes, the results
from an uncertainty analysis using Wilk’s formula are highly suspect. In addition, expert
opinion is generally used to estimate parameter distributions when using Wilk’s formula.
This introduces a bias according to the expertise and knowledge of the selected expert.
Expert opinion is generally provided as a conservatively large estimate and nonphysical
combinations of parameter space can be the result. When one considers these limitations,
it becomes apparent that a less simplified model of code uncertainty should be adopted.

A variety of methods have been designed to perform holistic analyses, all of which require
an intimate knowledge of the code and take much more effort than black box methods. For
example, the Predictive Capability Maturity Model (PCMM) [9] was recently introduced as
a guide to improve modeling and simulation tools with a focus on engineering development.
It addresses all forms of uncertainty discussed in this section in a thorough, step-by-step
process. This work doesn’t specifically follow the PCMM, but it demonstrates some of the
steps and ideals.

3. CTF Interfacial Mass Transfer Closure Model. Legacy codes often have mod-
els and simplifications that are unexplained in existing documentation, and there is extreme
value in reverse engineering this information. As an example, the mass transfer model in
CTF will be discussed briefly; more detail will be found in the CTF Theory Manual [14].
To adequately quantify the uncertainty from a model, it is first necessary to understand it.

The mass transfer has four possible contributions: subcooled liquid (scl), subcooled
vapor (scv), superheated liquid (shl), and superheated vapor (shv). The net mass transfer

214 UQ of COBRA-TF

is the sum of two of the contributions since each phase can either be subcooled or superheated
at a given time. Each contribution is calculated by dividing the total energy transferred via
phase change by the latent heat.

Γnet = Hshl

hf − hsf
Cp,lhfg

+Hshv

hg − hsg
Cp,vhfg

−Hscl

hsf − hf
Cp,lhfg

−Hscv

hsg − hg
Cp,vhfg

(3.1)

The net mass transfer is Γnet, H is the heat transfer coefficient for each phase, h is
enthalpy, and Cp is specific heat at constant pressure. The subscripts f and g represent the
liquid and vapor phases, respectively, and the superscript s indicates an enthalpy evaluated
at saturation. This model is demonstrated in Figure 3.1 for a single bubble. Superheated
contributions, which cause evaporation, are shown in red and subcooled effects, causing
condensation, are blue.

Γscl

Γshl Γscv

Γshv

VaporLiquid

Fig. 3.1: Mass transfer model in CTF

The fluid properties are evaluated according to the state equation and the heat transfer
coefficients are calculated from a variety of correlations. The correlations are averaged in
state space according to a flow regime map, which is divided into four normal regimes
and a single hot wall regime. When the surface temperature of a rod exceeds the wetting
temperature, the hot wall regime is used, which is a combination of the hot wall droplet
and hot wall film correlations. Each normal regime is some combination of three different
correlations: small bubble, large bubble, and film+droplet. The normal regime map is
shown in Figure 3.2.

The correlations are from various sources and a significant amount of effort was expended
to find their origins. A large number are based on experimental data, such as the Lee and
Ryley [8] or the Hughmark [7] correlations. Some are based on analytical solutions, such as
the Boussinesq [1] correlation, which is derived for a single particle in potential flow. Still
others are based purely on engineering judgment. As an example, the superheated liquid
large bubble heat transfer coefficient is equal to 278.0Btu/Ft2hr◦F , which is based on the
assumption that the superheated liquid, as an unstable phase, will quickly move towards
saturation. How a correlation is treated during an uncertainty analysis will depend on its
origin.

When a code lacks sufficient documentation, the origin of various models and correla-
tions can be lost. This is especially important when attempting to perform an uncertainty

N.W. Porter and V.A. Mousseau 215

0.0 0.2 0.4 0.6 0.8 1.0
Void Fraction []

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
t o

f C
or

re
la

tio
n

Us
ed

 [%
] Small

Bubble
Slug Churn

Turbulent
Annular

Mist

Small Bubble Large Bubble Film+Droplet

CTF Flow Regime Map

Fig. 3.2: Forced Convection Flow Regime Map

analysis because a detailed knowledge of the code is essential to the process. A few examples
that demonstrate these issues are shown in Equation 3.2.

1, 000, 000
Btu

ft2hr◦F
≈ 278.0

Btu

ft2s◦F
(3.2a)

2√
π
≈ 1.128 (3.2b)

0.738 ≈ 0.74 (3.2c)

The first example, a heat transfer coefficient of 278.0, is from the conversion of units
from hr−1 to s−1. An arbitrarily large value was selected based on engineering judgment,
but the logic behind this selection was lost. The second example seems to have no physical
significance in its numerical form, but it originates from an analytical derivation. The final
example is simply the round-off of a value from a correlation, which is very common in
CTF. All of this detailed information was lost in the pre-existing documentation and these
examples clearly demonstrate the importance of retaining this information.

Another aspect of creating documentation is that it helps to locate code bugs. For
example, one of the correlations is calculated based on the Jakob number, which is the ratio
of sensible and latent energy absorbed during phase change. When comparing the theory
manual to the source code, it became apparent that the Jakob number was calculated
incorrectly. Bugs like this become obvious when the theory manual and source code are
inconsistent.

CTF uses steady state, fully developed correlations to approximate transient behav-
ior. This eliminates the length and time scales associated with phenomena, which causes
discontinuities throughout the code. Smooth solutions are required to apply the numerical
method, so artificial smoothing must be introduced. This includes the state space smoothing
of the flow regime map, as well as spatial and temporal smoothing.

Before the heat transfer coefficients are calculated, all inputs to the model are smoothed
between two adjacent axial cells. After the calculation of the heat transfer coefficients, they

216 UQ of COBRA-TF

are averaged again to values at the original mesh. This effectively means that the coefficient
in each cell is informed by the conditions in its own cell, as well as the two surrounding cells.
This ensures that mass transfer gradients between adjacent control volumes are minimized.

xJ = 0.5xj + 0.5xj+1 (3.3a)
Hj = 0.5HJ + 0.5HJ−1 (3.3b)

Where x is some arbitrary scalar mesh quantity, j indicates the original scalar mesh,
and J indicates location on the intermediate momentum mesh. After the heat transfer
coefficients are calculated, they are smoothed over time using exponential under relaxation.

Hk = (Hn
k)ε · (Hn+1

k)1−ε (3.4)

The superscript n indicates that the coefficient is calculated at the previous time step
and n + 1 is at the current time step. The subscript k indicates the phase. The under
relaxation parameter, ε, is 0.9 in CTF. The heat transfer coefficients are then limited to
avoid any nonphysically large values. After this, the subcooled or superheated contribution
for each phase is turned off.

The use of these operations is necessary for code robustness, but they can introduce un-
certainties that are difficult to quantify. For example, the averaging scheme is not weighted
by cell volume, which will introduce significant uncertainty when two adjacent cells have
different sizes. The order of these operations can also play a significant role in code stability
and uncertainty. For example, the switch from subcooled to superheated correlations occurs
after the under relaxation. When the liquid is close to saturation and switches between the
two contributions, the time smoothing on the heat transfer coefficient used in the calcula-
tion is effectively eliminated. A second example is that the clipping of the heat transfer
coefficients to avoid nonphysically large values can completely eliminate the use of some
correlations.

4. Sensitivity Studies. Once the details of the mass transfer model are fully under-
stood, it is necessary to perform a thorough sensitivity study to determine which parameters
have the most impact on a simulation. To achieve this goal, a test problem was designed that
transitions through all flow regimes and uses all interfacial heat transfer correlations. The
test problem models a single subchannel from a pressurized water reactor. The transient
begins at nominal power and the linear heat rate is increased to 600% over 100 seconds. At
the end of the transient, the exit quality is nearly unity and the transient is sufficiently long
that it approximates a series of steady state calculations.

Multipliers were implemented on all interfacial heat transfer correlations in the code,
as well as many of the numerical parameters discussed in the previous section. Each of
the multipliers is used to independently vary the parameter or correlation from 95% to
105%. The simulation is run with various multiplier values and the change in the solution
is assessed quantitatively using a nondimensional L2, or Euclidean, norm.

‖x‖2 =

√∑
i (xn,i − xi)2√∑

i x
2
n,i

(4.1)

Where xi is the exit quality at time step i with the multiplier and xn,i is the nominal
value at that time step. This essentially measures the “distance” from the nominal run

N.W. Porter and V.A. Mousseau 217

caused by a perturbation in the multiplier. This distance can be plotted with respect to
the multiplier value. The expected behavior is shown in Figure 4.1(a), where the distance
from nominal increases as the multiplier gets further from unity. This is described by a
characteristic V-shape, which is shown for two of the inputs with the largest impact on the
exit quality: the mass flow rate and the heat rate.

When the norms are plotted as a function of the correlation multiplier, the distance from
nominal has no relationship to the initial perturbation, which does not follow the expected
behavior. This is because the “signal” that is being measured, correlation sensitivity, is
much smaller than the “noise”, this is shown in Figure 4.1(b). Note that the simulation
is identical to nominal when the multiplier is equal to one. The noise can come from
numerical error and the discontinuities caused in the flow regimes, but in this case, it can
easily be eliminated by lowering the time step by a factor of 1000. The results are shown
in Figure 4.1(c) for the subcooled small bubble correlations. The sensitivity of the solution
to the correlations is about 0.003, while the numerical noise is about five times larger. This
process is important because it ensures that the solution is behaving as expected and that
the desired sensitivities are measured.

The maximum distance from nominal for each multiplier could be used to give a quan-
titative measure of the parameter’s overall influence on the simulation. This information is
important because the parameters with the highest sensitivities are likely to impart the most
uncertainty. The simulations with the small time step are necessary to reveal true sensitivity
information from the selected test problem. Figure 4.1 demonstrates that the numerical un-
certainty is about five times larger than the parameter uncertainty of the bulk mass transfer
model, so future work must focus on reducing the numerical error before further investi-
gating the mass transfer uncertainty. Because the parameter uncertainty is hidden by the
numerical uncertainty for the mass transfer model, assessment of the parameter sensitivity
would be a purely academic exercise and is not performed here.

218 UQ of COBRA-TF

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Multiplier Value

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2-
no

rm

Heat Rate [W/m]
Flow Rate [kg/s]

(a) Parameter uncertainties dominant, ∆t=2E-2

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Multiplier Value

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0.020

2-
no

rm

(b) Numerical uncertainties dominant, ∆t=2E-2

0.94 0.96 0.98 1.00 1.02 1.04 1.06
Multiplier Value

0.0004

0.0008

0.0012

0.0016

0.0020

0.0024

0.0028

0.0032

2-
no

rm

(c) True sensitivity with small time step, ∆t=2E-6

Fig. 4.1: Sensitivity Study

N.W. Porter and V.A. Mousseau 219

5. Bayesian Calibration of the Lee and Ryley correlation. This section will
demonstrate the minute detail necessary to perform a holistic uncertainty analysis. Each
part of every model must be explored in depth and the uncertainty quantified. The Lee and
Ryley correlation [8] will be used as an example. This correlation is used in CTF for the
vapor heat transfer coefficient for large bubbles and droplets, as well as for the superheated
small bubble correlation. It is one in a family of correlations that take the same form.

Nu = 2.0 +ARe1/2Pr1/3 (5.1)

The Nusselt number is defined as Nu = hD/k, Reynolds number as Re = ρvD/µ and
the Prandtl number as Pr = Cpµ/k. The velocity of the continuous phase is v, h is the
heat transfer coefficient, D is the particle diameter, the thermal conductivity and specific
heat of the continuous phase are k and Cp, respectively. The coefficient A is determined
experimentally and the other coefficients do not change. This form first appeared in 1938
with a coefficient of 0.55, where it was derived for mass transfer from droplets to air [3].
The second proposed form used a coefficient of 0.60 [12], and the form that is examined here
uses a coefficient of 0.738 and is determined from experiments of water droplets in steam.

To calibrate this correlation, a total of 1233 data points were gathered from 24 different
sources for heat and mass transfer to single spheres [13] [6]. The data is grouped into four
categories according to the dispersed and continuous phases. The dispersed phase is either
solid or liquid and the continuous phase is either liquid or air. The dependence of Nu on
Re, Pr and Re1/2Pr1/3 across this data set is shown in Figure 5.1. Note that the Lee and
Ryley correlation is shown as a dashed line in Figure 5.1(c).

The large majority of the data is for heat transfer from solid spheres to air at atmospheric
conditions. This introduces a model form uncertainty because the model is applied to water
in steam or steam in water. This is not ideal, but experiments with superheated steam
present significant difficulties. Instead, scaling arguments are made to put the correlation
in nondimensional space and then it is applied to reactor conditions. This process assumes
that the correct functional form is captured in Equation 5.1.

Outliers are observed at low Re1/2Pr1/3 in Figure 5.1(c). These are from the ex-
periments of Yuen and Chen, which had significant temperature differences between the
continuous and dispersed phases [17]. They proposed a factor to account for the effect of
superheat. Similarly, the highest values of the liquid/liquid data are under-predicted by
the Lee and Ryley correlation. This is because the experiments of Griffith have significant
differences in the viscosity of the continuous and dispersed phases [5]. In addition, natural
convection can become important at low velocities, which can be accounted for by the inclu-
sion of the Grashof number, Gr. This suggests that the functional form of the correlation
should have more than two dimensions.

Nu = f(Re, Pr,
∆h
hfg

,
µc
µd
, Gr) (5.2)

The viscosity is µ and the subscripts c and d represent the continuous and dispersed
phases, respectively. For this work, it is assumed that the functional form given in Equation
5.1 is correct and that inclusion of data sets with the higher dimensional dependence will
account for this assumption in the final uncertainty results. Therefore, the form of the
correlation that will be calibrated has four coefficients: θ1, θ2, θ3 and θ4.

Nu = θ1 + θ2Re
θ3Prθ4 (5.3)

220 UQ of COBRA-TF

10-1 100 101 102 103 104 105 106

Re

10-1

100

101

102

103

Nu

solid/liquid
solid/air
liquid/liquid
liquid/air

(a) Dependence on Reynolds Number

10-1 100 101 102 103 104

Pr

10-1

100

101

102

103

Nu

solid/liquid
solid/air
liquid/liquid
liquid/air

(b) Dependence on Prandtl Number

10-1 100 101 102 103

Re1/2Pr1/3

10-1

100

101

102

103

Nu

solid/liquid
solid/air
liquid/liquid
liquid/air

(c) Plot of the raw data against Lee and Ryley correlation

Fig. 5.1: Raw data used in Bayesian calibration

N.W. Porter and V.A. Mousseau 221

An additional consideration is that there are a number of different definitions of the
nondimensional numbers, all of which are equally valid. For example, some experimentalists
evaluate properties at the surface of the particle, while others use the free stream numbers.
This adds ambiguity to the analysis, which will be neglected here.

These coefficients are calibrated to experimental data using Bayesian methods. This
allows for the explicit treatment of the experimental uncertainty, which is used to obtain
information about the marginal and joint distributions of the four coefficients. This method
provides extremely detailed uncertainty information, with realistic values for the coefficients
and reduced uncertainty when compared to expert opinion. It also easily allows for addi-
tional experimental data points to be included and the results re-calibrated. For brevity,
the details of Bayesian methods are not discussed here; refer to [4] for more information.

Each of the four sets of data is calibrated separately. A joint distribution between
the four coefficients is created from the experimental data and then sampled 1000 times.
The sampled data is used to gather information about the coefficient distributions. The
sampled points for the solid/air data are shown in Figure 5.2, where the joint distribution
has been represented as six bivariate plots. Some of the coefficients are strongly correlated,
for example, there is a strong correlation between θ1 and θ4, as well as between θ2 and θ3.
Most black box methods assume that input uncertainties are independent, so this is one of
the many advantages of using Bayesian calibration.

1.0 1.5 2.0 2.5 3.0 3.5 4.00.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

(a) θ1 vs θ2

1.0 1.5 2.0 2.5 3.0 3.5 4.00.50

0.52

0.54

0.56

0.58

0.60

0.62

(b) θ1 vs θ3

1.0 1.5 2.0 2.5 3.0 3.5 4.00.1

0.2

0.3

0.4

0.5

(c) θ1 vs θ4

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.50

0.52

0.54

0.56

0.58

0.60

0.62

(d) θ2 vs θ3

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.600.1

0.2

0.3

0.4

0.5

(e) θ2 vs θ4

0.50 0.52 0.54 0.56 0.58 0.60 0.620.1

0.2

0.3

0.4

0.5

(f) θ3 vs θ4

Fig. 5.2: Bivariate projections of data sampled from solid/air joint distribution

Using the 1000 data points, marginal distributions can be constructed. These distribu-
tions will lose information about the correlation between the coefficients and instead give
information about the uncertainty of each coefficient independent of the others. This is
useful because it makes comparison to traditional distribution concepts, such as mean and
standard deviation, much easier. These results are shown in Figure 5.3 for each of the four
material combinations. The results for the four coefficients are very different depending on
the experimental data used to calibrate the correlation.

This information can be summarized using a simple mean and standard deviation.

222 UQ of COBRA-TF

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

θ
1

Liquid−Liquid
Solid−Liquid
Liquid−Air
Solid−Air

(a) Distribution of first coefficient

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

θ
2

Liquid−Liquid
Solid−Liquid
Liquid−Air
Solid−Air

(b) Distribution of second coefficient

0.4 0.45 0.5 0.55 0.6 0.65
0

10

20

30

40

50

60

70

θ
3

Liquid−Liquid
Solid−Liquid
Liquid−Air
Solid−Air

(c) Distribution of third coefficient

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

θ
4

Liquid−Liquid
Solid−Liquid
Liquid−Air
Solid−Air

(d) Distribution of fourth coefficient

Fig. 5.3: Marginal distributions from Bayesian calibration

µ =
1
N

N∑
i=1

xi (5.4)

σ2 =
1

N − 1

N∑
i=1

(xi − µ)2 (5.5)

The results for all material combinations are shown in Table 5.1. These results show
large differences in the distribution depending on which experimental data is selected.

The only coefficient that is within one standard deviation of the value used by Lee
and Ryley is the Prandtl exponent for the solid/air experiments. The only results within
two standard deviations is in the liquid/liquid coefficients, which have large uncertainties
and are therefore questionable. All other results vary from the expected values by up to
nine standard deviations. Additionally, θ1, which has been given both theoretical [1] and
experimental [2] backing, varies significantly from the value used in the correlation.

All of these issues raise important questions about the applicability of the assumptions
used to make the correlation and also the applicability of the correlation within CTF. Many
of the issues discussed earlier may have an impact on these results. The functional form of
the correlation does not include superheat, viscosity, or natural circulation, and there may

N.W. Porter and V.A. Mousseau 223

Dispersed/ θ1 (2.0) θ2 (0.738) θ3 (1/2) θ4 (1/3)
continuous µ σ µ σ µ σ µ σ

Liquid/air 1.752 0.097 0.511 0.028 0.521 0.007 0.270 0.019
Liquid/Liquid 3.244 0.577 0.428 0.207 0.550 0.029 0.271 0.015
Solid/air 3.565 0.390 0.373 0.055 0.563 0.016 0.331 0.063
Solid/Liquid 3.706 0.183 0.491 0.034 0.527 0.006 0.386 0.012

Table 5.1: Mean value and standard deviation for all four coefficients for each material
combination

be additional dimensions. The experimentalists used different forms of the nondimensional
numbers, which introduces a large amount of uncertainty. Finally, the fundamental assump-
tions between different experiments may be inconsistent. More work would be necessary to
draw conclusions about the uncertainty of the Lee and Ryley correlation, but this work
provides the first step.

6. Conclusion. This work has demonstrated some of the difficulties presented when
performing VVUQ on legacy codes. Many older codes have limited documentation, which is
the first difficulty in this process. Additionally, it can be difficult to measure uncertainties
and sensitivities when they are hidden by noise, which originates from other sources of
uncertainty. In CTF, the noise can be eliminated by running the problem at extremely
small time steps, but this will not be a solution for all codes. Once the sensitivities are
measured correctly, the correlations and numerical parameters can be ranked according to
their importance to the problem.

In the CTF mass transfer model, it is shown that uncertainties may originate from nu-
merical smoothing parameters, which are necessary because the code uses steady state fully
developed correlations to approximate transient behavior. If these numerical parameters
contribute significantly to the code uncertainty, black box uncertainty analysis methods,
which ignore these numerical parameters, are extremely limiting. Nonetheless, it is also
clear why these uncertainties are so often neglected.

It is difficult to determine the distribution of numerical smoothing parameters, values
based on engineering judgment, or values from analytical derivations. For example, it is
difficult to create a justifiable distribution for the under relaxation parameter (ε in Equa-
tion 3.4) because numerical issues will be caused if it is too small. On the other hand, the
distribution cannot be based on code robustness because that would not be a true measure
of uncertainty. Another example is the large values selected for the heat transfer coefficients
that quickly force the unstable phases towards saturation. The meaning of “large” is very
subjective and it is difficult to specify its distribution. Methods for defining these distri-
butions will be necessary to adequately quantify the uncertainty of the rest of the mass
transfer model.

The uncertainty of correlations that are based on experimental data can be thoroughly
investigated because it is clear how the experimental data can inform the distribution of the
correlation coefficients. To demonstrate this process, Bayesian calibration was performed on
the Lee and Ryley correlation. This process allows experimental uncertainty from multiple
sources to directly inform the correlation uncertainty. These uncertainties can then be used
as justifiable distributions during code simulations. This process is extremely robust and
flexible.

This work could be completed by first quantitatively ranking the correlations and nu-

merical parameters in the mass transfer model. This information can then be used to focus
uncertainty quantification efforts on the most influential parameters. The correlations can
be analyzed using Bayesian calibration, like with the Lee and Ryley correlation in this work.
Methods for assigning input uncertainty distributions to smoothing parameters, analytical
derivations, and values based on engineering judgment must also be developed to complete
this work.

Acknowledgments. The author would like to thank Robert Salko (ORNL) and Maria
Avramova (PSU) for their extensive knowledge of CTF and their availability to discuss is-
sues relevant to this paper. Additional thanks to Russell Hooper (SNL), who provided
a very helpful review, and to Brian Williams (LANL), Ralph Smith (NCSU), and Alli-
son Lewis (NCSU) for their assistance with the Bayesian calibration process. This re-
search was supported by the Consortium for Advanced Simulation of Light Water Reac-
tors (http://www.casl.gov), an Energy Innovation Hub (http://www.energy.gov/hubs) for
Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract
Number DE-AC05-00OR22725.

REFERENCES

[1] M. J. Boussinesq, Calcul du pouvoir refroidissant des courants fluids, Journal de Mathématiques
Pures et Appliquées, 1 (1905), p. 310.

[2] S. K. Friedlander, Mass and heat transfer to single spheres and cylinders at low reynolds numbers,
AIChE Journal, 3 (1957), p. 43.

[3] N. Frössling, Uber die verdunstung fallender tropfen (The evaporation of falling drops), Gerlands
Beitrage zur Geophysik, 52 (1938), pp. 170–216.

[4] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data Analysis, Chapman &
Hall/CTC, 1997.

[5] R. M. Griffith, Mass transfer from drops and bubbles, Chemical Engineering Science, 12 (1960),
pp. 198–213.

[6] G. A. Hughmark, Mass and heat transfer from rigid spheres, AIChE Journal, 13 (1967), pp. 1219–
1221.

[7] M. Ishii and M. A. Grolmes, Inception criteria for droplet entrainment in two-phase concurrent film
flow, AIChE Journal, 21 (1975), pp. 308–318.

[8] K. Lee and D. J. Ryley, The evaporation of water droplets in superheated steam, Journal of Heat
Transfer, 90 (1968), pp. 445–451.

[9] W. L. Oberkampf, M. Pilch, and T. G. Trucano, Predictive capability maturity model for com-
putational modeling and simulation, Tech. Rep. SAND2007-5948, Sandia National Laboratories,
October 2007.

[10] Y. Perin et al., Uncertainty analysis of CTF prediction of moderator and fuel parameters for the
OECD LWR UAM benchmark using exercise II-3, NURETH-15, (2015), pp. 12–15.

[11] N. Porter, M. Avramova, and K. Ivanov, Uncertainty and sensitivity analysis of COBRA-TF for
the OECD LWR UAM benchmark using Dakota, NURETH-16, (2015). to appear.

[12] W. E. Ranz and W. R. Marshall, Evaporation from drops, Chemical Engineering Progress, 48
(1952), pp. 141–146, 173–180.

[13] P. N. Rowe, K. T. Claxton, and J. B. Lewis, Heat and mass transfer from a single sphere in an
extensive flowing fluid, Transactions of the Institution of Chemical Engineers, 43 (1965), pp. T14–
T31.

[14] R. K. Salko and M. N. Avramova, CTF Theory Manual, Penn State, May 2015. to be editted.
[15] M. J. Thurgood et al., COBRA/TRAC - A thermal-hydraulics code for transient analysis of nuclear

reactor vessels and primary coolant systems, Tech. Rep. NUREG/CR-3046, PNL-4385, US Nuclear
Regulatory Commission, 1983.

[16] S. S. Wilks, Determination of sample sizes for setting tolerance limits, The Annals of Mathematical
Statistics, 12 (1941), pp. 91–96.

[17] M. C. Yuen and L. W. Chen, Heat-transfer measurements of evaporating liquid droplets, International
Journal of Heat and Mass Transfer, 21 (1978), pp. 537–542.

CCR Summer Proceedings 2015 225

SPPARKS SOFTWARE UPDATES

JUSTIN M. ROBERTS∗, JOHN A. MITCHELL† , AIDAN P. THOMPSON‡ , AND VEENA TIKARE§

Abstract. SPPARKS, an acronym for Stochastic Parallel Particle Kinetic Simulator, is a kinetic Monte
Carlo algorithm to simulate events such as grain growth and diffusion. New applications for SPPARKS have
been developed but not fully tested or documented. Our work was to understand how SPPARKS operates
in order to finish testing and documenting new applications of SPPARKS. This report outlines what was
accomplished during the summer of 2015.

1. Introduction. After we learned how to compile and run SPPARKS, we were able
to start testing and writing documentation for new SPPARKS applications. This required
updating the new applications to the latest version of SPPARKS. During the summer of
2015, we were able to completely finish the Potts gradient application and made significant
progress on the Curvature diagnostic.

2. Understanding SPPARKS terminology. SPPARKS uses its own software spe-
cific terminology to refer to particular data structures and operations. We will explain some
of the terminology here.

SPPARKS sets up sites to run simulations. A site is a point in the lattice at which an
event can occur. The events performed at a given site are unique to the application driving
SPPARKS. For example, below we make mention of the Potts gradient application. Events
on sites in a Potts gradient application refer to the site flipping its spin, or in simple terms
switching to a different grain. Sites in a simulation are situated in a specified pattern or
lattice. A few examples of lattice patterns are square, simple cubic, face-centered cubic
(fcc), body-centered cubic (bcc), and diamond.

(a) Simple Cubic Lat-
tice

(b) BCC Lattice (c) FCC Lattice

Fig. 2.1: Example Lattice Orientations[1]

3. Understanding SPPARKS. SPPARKS is very complex code that can be run
in parallel or serial. It is controlled using an input file which has various different com-
mands provided by the user[3]. A few examples of SPPARKS commands are sweep, lattice,
solve style, app style, run, and diag style. These commands specify which SPPARKS appli-
cation to use, which diagnostic tools to use, and how it is solved. The input file is read with
the parse function called from the file() function within input.cpp. After it is parsed, the

∗Dept. of Mechanical Engineering, Brigham Young University, justinrobertsdw@gmail.com
†Sandia National Laboratories, jamitch@sandia.gov
‡Sandia National Laboratories, athomps@sandia.gov
§Sandia National Laboratories, vtikare@sandia.gov

226 SPPARKS Computing

command is executed from a list of options within the execute command() function within
input.cpp. The iterate() function controls which solver to use. The simulation can be solved
by using either KMC (Kinetic Monte Carlo) or rKMC (rejection Kinetic Monte Carlo). The
iterate() function is found from within app lattice.cpp and is called from run() found in
app.cpp. The run command specifies how many time steps the program will execute.

SPPARKS generates information from a simulation in various forms. Information can
come from the log file, dump images, dump files, and diagnostics. Diagnostics can be chosen
using the diag style command. We are currently working on a new diag style command called
curvature.

4. Curvature. The Curvature diagnostic was originally developed by Veena Tikare
(vtikare@sandia.gov). The diagnostic computes curvatures for each grain and then writes
this information to disk for further analysis. It also has the option of writing the number of
grains to the log file at a given time step defined by the stats command. The log file option
was not originally part of the code but was added by using the functions stats header()
and stats(). These functions are called from the functions stats() and stats header() from
output.cpp in the SPPARKS source code. An example of how a log file is output to the
screen during run time is given below. Notice that Ngrains is an additional column provided
by the curvature diagnostic Table 4.1.

Curvature Mv is defined as

Mv =
∑
edges

1
2
βL,

where L is the length of each edge, and β is the angle formed by two faces on an edge. After
implementing the function into SPPARKS it becomes:

Mv =
1
2
π

2
(Eo − Ei)L,

where Eo is the number of edges on a face which form an angle of π/2. Ei is the number of
edges on a face which form an angle of −π/2. Grain edges that share three different grains
and grain corners are not counted as part of the face curvature.

The algorithm is still being tested but is very close to being added to the SPPARKS
repository and included as a diagnostic option of SPPARKS.

J.M. Roberts, A.P. Thompson, J.A. Mitchell, and V. Tikare 227

Time Naccept Nreject Nsweeps CPU Energy Ngrains
0 0 0 0 0 406250 15625

2.5 93493 922132 65 0.518 127208 108
5.03846 109515 1937360 131 1.01 101282 51
7.53846 121225 2941275 196 1.49 89664 35
10.0385 132541 3945584 261 1.98 77620 24
12.5385 141994 4951756 326 2.45 69984 18
15.0385 151674 5957701 391 2.93 60976 15

17.5 162959 6946416 455 3.4 43178 9
20 171903 7953097 520 3.86 17004 2

22.5 172496 8968129 585 4.31 16600 2
25 172972 9983278 650 4.76 16600 2

Table 4.1: Command line output with Ngrains

5. Potts Gradient. Another application of SPPARKS we worked on and completed
was an application called Potts gradient. The Potts model is typically used to simulate
grain growth in metals. Grain growth occurs when a metal is held at a high temperature;
at high temperature the metal undergoes recovery, recrystallization, and nucleation.

The Potts gradient application adds temperature gradients to the Potts model. Every
site in the model is assigned a temperature given by a linear function. The linear function
is uniquely defined by the value T0, at the center of the lattice, and gradients in the x,y,
and z directions.

The equation

M0e
−Q
KT

defines the mobility at each site where M0 is the mobility constant, K is Boltzmann’s
constant (8.6171×10−5 eV

K), T is the temperature of the site, and Q is the activation energy.
The grain boundary mobility affects the probability that a particular grain will grow. Higher
mobility means higher probability of grain growth. The algorithm was originally intended
for use with temperature gradients, but we later added mobility gradients as another option.
When mobility gradients are used, each site is assigned a mobility. The mobility is initialized
at the center of the lattice and then is assigned to each site depending on the site’s position
in the lattice. The mobility gradient is also defined as a linear function, analogous to the
described above for temperature.

The code was extensively tested and released with the SPPARKS source code. Testing
required image generation. A program was used to translate SPPARKS dump files to par-
aview image files. Paraview enabled us to view grain growth animations. With this tool, we
were able to uncover a critical bug in the code that was allowing negative temperatures and
mobilities to be assigned to certain sites. The user is expected to provide reasonable gradi-
ents that don’t cause negative temperatures or mobilities. If the gradients cause negative
values, the program terminates with an error statement.

Figure 5.1 demonstrates the mobility gradient option of the Potts gradient model. As
shown, grains on the left are much larger than the grains on the right. This is because
mobility on the left is significantly larger than mobility on the right.

To generate Figure 5.1, an initial mobility of 0.5 was chosen at the center with lattice
dimensions 400 X 100 X 100 giving a total of 4,000,000 sites oriented on a simple cubic
lattice. A mobility gradient of .0025 was defined in the X direction which gives a mobility

228 SPPARKS Computing

Fig. 5.1: Potts model with mobility gradients applied

of 1.0 at x-max and 0 at x = 0. This example illustrates the affect of mobility gradient on
grain growth; a temperature gradient has a similar effect[2]. These parameters display the
major changes that grain growth undergoes when a mobility gradient is applied. We also
generated videos of the simulation of Figure 5.1 which are posted under the pictures and
movies section on the SPPARKS web site[3].

6. Understanding documentation. All of the HTML code on the SPPARKS web
site was generated from a text to HTML converter. The converter uses markup commands
to convert .txt files into HTML code that is read by a browser. The markup commands
include some but not all of the options of HTML. It includes elements such as input, br,
p, hr, a, ul, li, and pre. We learned how to write markup files and convert them into
HTML for the SPPARKS website. We wrote documentation for the new Potts gradient
application mentioned above which required updates to existing pages and a whole new doc
page. The formating style needed to be consistent with other doc pages and needed careful
consideration.

7. Conclusions. We were able to implement new applications into the existing SP-
PARKS code along with documentation provided on the SPPARKS website[3]. This required
us to learn how SPPARKS operates and how to write markup code. It also required a sound
understanding of material science, and computer science. More applications are in process
and will be added to the SPPARKS source code and doc pages in the near future.

REFERENCES

J.M. Roberts, A.P. Thompson, J.A. Mitchell, and V. Tikare 229

[1] H. Foll, Lattice and crystal. http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_1/
basics/b1_3_1.html.

[2] J. A. Mitchell and V. Tikare, Numerical simulation of ni grain growth in a thermal gradient, SIAM
Conference on Computational Science and Engineering, Salt Lake City, Utah, USA, 2015, Sandia
Technical Report: SAND2015-1665c.

[3] S. Plimpton, C. Battaile, M. Chandross, L. Holm, A. Thompson, V. Tikare, G. Wagner,
E. Webb, X. Zhou, C. G. Cardona, and A. Slepoy, Spparks kinetic monte carlo simulator.
http://spparks.sandia.gov/index.html.

[4] , Crossing the Mesoscale No-Man’s Land via Parallel Kinetic Monte Carlo, Sandia report
SAND2009-6226, October 2009.

http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_1/basics/b1_3_1.html
http://www.tf.uni-kiel.de/matwis/amat/def_en/kap_1/basics/b1_3_1.html
http://spparks.sandia.gov/index.html

CCR Summer Proceedings 2015 230

GRAPH REPRESENTATION FOR NEURAL NETWORKS

FELIX WANG∗ AND FRED ROTHGANGER†

Abstract. How we formulate and define a problem that is critical to our ability to manipulate the
relevant ideas in thinking about that problem. In the domain of neural networks, in particular, spike
timing based models, there is a need for a suitable representation that incorporates both state dynamics
as well as structural dynamics. As a practical matter, the usability and scalability of the representation as
mapped onto an implementation in software is also important. We introduce a graph-theoretic approach to
representation in order to address these needs, both as a way of specifying the construction of a complex
neural network and in terms of describing its time evolution during simulation.

1. General Overview. The goal of providing a graph-theoretic description of a neural
network is to facilitate the efficient and straightforward exchange of network models [5, 3].
There are five major components that make up the graph representation language designed
to describe and construct neural networks. These are, in order of dependency: vertex, edge,
graph, subgraph, and association.

Generally, a graph is composed of vertices and edges, G(V,E), where V is the vertex set
and E is the edge set. To accommodate the construction of complex graph connectivity, we
introduce the concept of subgraphs and their associations. A subgraph, as its name implies,
contains a subset of the vertices and edges of a graph. If a subgraph shares the same vertex
set as a graph, it’s referred to as a spanning subgraph of that graph. If a subgraph shares
the same edge set as a graph over a vertex set of that graph, it’s referred to as an induced
subgraph of that graph by that vertex set. The term association, or association scheme,
is used to determine how the vertices of two subgraphs are connected, expanding upon the
notion of edges. Whereas vertices are connected by edges, subgraphs are associated by
schemes. Furthermore, associations may be either undirected or directed according to the
underlying edges.

The role of a graph, then, is to define the vertex sets, and then to determine the relevant
edges, subgraphs, and associations on top. Importantly, all subgraphs and associations are
decomposable in terms of their vertices and edges. For graph hierarchies, or graphs of
graphs, the convention we use is to treat a graph as a subgraph in a higher-order graph.
The viewpoint we adopt can be thought of as vertex-centric. That is, the main actors are
the vertices, with the edges coming into play when there is need for communication among
vertices. That being said, there is considerable communication, and edges have a fairly
substantial role in determining state dynamics as a result of information exchange.

1.1. Specification vs. Simulation. In terms of simulation, graphs specify what get
simulated, being resolved down to the level of vertices and edges. In line with this, graphs
(and subgraphs) don’t have state dynamics associated with them. Rather, (sub)graphs
provide a means to simulate structural dynamics, how the vertices and edges are organized
and how they evolve throughout simulation. For (sub)graphs that may benefit from having
state, such as in cases of top-down control, the procedure is to define a vertex over over
the subgraph, with the connections determining the particular organization. This design
principle is taken from the philosophy that more is different, where hierarchical levels of
organization each require their own abstraction and language to reason about effectively [2].
As a result, the specification of a vertex entails an instance that is simulated by a given
simulation tool, and the specification of a graph governs the existence of those instances.

∗University of Illinois at Urbana-Champaign, fywang2@illinois.edu
†Sandia National Laboratories, frothga@sandia.gov

F. Wang and F. Rothganger 231

On the simulation of edges, the graph specification tends towards not creating separate
instances per edge, even though edges may contain their own state dynamics (e.g. plastic
synapses). Particular dynamics may require state from the vertices that are connected (e.g.
voltage-dependent synapses), which poses an issue to the simulator on the locality of storage
of state information. For directed edges, connecting a source to a target, it is typically the
target that is more closely bound to the computation of edge state, and the composition of
an edge with its target vertex would yield more efficient simulation. For undirected edges,
or where information is shared equally between vertices, a shared memory model, perhaps
with ghost regions across compute nodes, may be more appropriate, again incorporating
edge dynamics into that of the vertex. Of course, edges may also be simulated as their own
instances, more of as a fall-back mechanism.

2. Components. Although the different components types are given as vertex, edge,
graph, subgraph, and association, further specification to handle things like I/O or expected
connection behavior also exist. This additional information is provided as an attribute list.
Other forms of metadata about a component is its name or identifier that may be referred
to by other components (cross-file), a description or commentary about the particular com-
ponent, and references of publications that a component was defined from. At the top of a
component specification, various constants and equations that are used in the construction
of that component but not necessarily required during simulation may be defined. Examples
of this may include useful mathematical constants or special functions to compute spatial
distribution.

2.1. Vertex. Vertices are the main instantiated object and contain information about
its dynamics in the form of state, parameters, events, and their equations. The difference
between state and parameters in the specification indicate whether a value should be stored
(and updated) for each instance of a vertex population. Here, a population refers to a vertex
set of the same vertex class (identical equations and parameters values), and is a special case
of a subgraph. A population may contain several instances of a vertex, each with its own
state, but a population will always contain one copy of the parameters, which are shared
among all instances of that population. There may be many populations, differentiated by
name, of vertices that are constructed from the same basic vertex class, each one containing
a modified set of parameters (additional information in sec. 2.1.2). These parameters are
evaluated once at the creation of the vertex population, while vertex states, while initialized,
are updated according to the equations throughout the simulation.

Equations can be broken up into four basic types: constant, closed-form, drift, and
diffuse. Although the terms constant and closed-form are easily understood equation types,
the terms drift and diffuse may be less familiar. These terms come from the language of
stochastic differential equations, where equations of state can be distinguished between a
drift and diffusion process [6]. A prime example of this is the modeling of Brownian motion:
a particle normally moves at a given velocity unhindered (drift), but occasionally, it will
collide with another particle and its velocity changes considerably (diffuse). Whereas the
drift equations are continuously integrated, the diffuse equations are evaluated as a result
of events. This may be formulated as eq. 2.1.

dxi = fi(x)dt+
n∑

m=1

gmi (x)dNm (2.1)

where f gives the more common ordinary differential equation of state x = {xi|i = 1, . . . , k},
and g is evaluated on x according to a counting process N for any number of events n.

The convention of order of evaluation of the different types of equations is as follows.
During the initialization of a vertex instance, the constant valued parameters or state are

232 Graph Representation for Neural Networks

evaluated and remain fixed for the duration of the life of that instance in the case of state,
or the life of the vertex population in the case of parameters. In the latter case, because
parameters are shared among all vertices of the same group, storage in memory may be
performed more efficiently. During each evaluation of a time-step or increment, the closed-
form equations are evaluated at the beginning, basing their computation off of values in a
previous step. Subsequently, drift equations are integrated for that time-step, which may
be fixed or variable, depending on the ODE solver used. Finally, any events that were
generated as a result of the integration are processed. These are treated similarly to events
that were ‘received’ on the event queue during that time-step.

2.1.1. Event Queue. More of an implementation rather than specification detail, the
event queue is simply where a vertex stores a list of events that it must evaluate at some
point. These events may be generated by a process in the vertex (e.g. spiking activity),
or received through an edge from another vertex. Events are indexed by both the class of
event that occurred and a timestamp of when it should be evaluated. Events may not need
more information than simply the class and the timestamp, such as in the case of a spike
where the response dynamics can be defined at the target vertex. However, for events that
require additional data to be passed between vertices, a buffer along with its size should be
specified.

By convention, events are not processed until after they would have occurred. This
allows for the ability to perform precisely timed events if desired by rolling back the drift
computation to the timestamp, computing the event, and returning to the present time.
Related to this, events that occur as a result of the drift computation (e.g. spiking reset)
may occur immediately after the event conditions are met. However, it may be preferable
to perform such a check after a time-step has been fully computed as to prevent excess
computation, as events are sparse.

2.1.2. Inheritance and Inclusion. Following the DRY (don’t repeat yourself) prin-
ciple, as well as following the N2A language, the definition of vertices accommodates the
ideas of inheritance from object-oriented programming [8]. Inheritance is when a vertex
class acts as a specialization on top of an existing parent or vertex that it is based off of. All
of the state, equations, etc. are inherited or copied from the parent, and the child vertex
is then able to add or modify these. An especially apt use-case for this is when a parent
vertex class may take on a variety of parameterizations, while maintaining the same state
dynamics (dependent on these parameterizations).

Inclusion is when a vertex class includes or contains other vertex classes as part of its
own specification. Here, the state dynamics of the included vertex is combined with that of
the container vertex. An example of when this may be when an otherwise passive membrane
includes a variety of ion channels. Unlike the specification of a graph (sec. 2.3), however,
inclusion of vertices in a vertex does not permit connecting the included vertices through
edges. Rather, the included vertices should be thought of more as modular components of
that vertex. Equations in an included vertex that explicitly refer to states in a container
vertex for their computation (e.g. an ion channel) should use the term sup (short for
superset) to specify such a state.

2.1.3. Vertex Types. The three main vertex types are: simulated, device, and file.
For all practical purposes, all models with state dynamics that exist in the graph will be
of the simulated variety. These compose the various neuron classes, but may also include
vertices that correspond to a particular subgraph. The standard language for simulated
vertices do not work as well for describing devices or files, however. Due to their nature,
these vertex types must define the reading and writing of data to and from something that

F. Wang and F. Rothganger 233

isn’t implemented by the simulator. Moreover, the data received or to be provided may
require additional processing before crossing the gap, providing something of a distinction
between data and state. Devices in particular may vary greatly depending on the hardware
communication protocol, making generalization difficult.

Devices correspond to external hardware (or virtual) sensors or motors that the simu-
lation has access to and receives or transmits data, respectively. In general, data may be
exchanged by providing a port to connect to by the device vertex. The expectation is that
the hardware device will supply data on this port, from which the vertex in simulation is
able to process before passing it to the rest of the simulation. Data may be exchanged either
at a specified rate, in which the port is checked periodically, or provided through a callback,
in which communication occurs asynchronously. Similarly, the simulation should supply
data to a port and indicate this to the hardware for processing (e.g. through a callback
function).

Files can be thought of as a special type of device, and correspond to files stored on
disk. These are referenced by a file path, and can be both written to and read from, although
the primary purpose of files is to log data from the simulation. Typically, writing to file
occurs at a specified rate. This type of logging is distinct from that of saving the entire state
of the simulation (snapshotting or checkpointing) such that it may be resumed in the case
of faults. To borrow some terminology from Charm++, state information from simulation
that is transformed into a more serialized format to be written to file (or device) is packing,
and data that is processed from a device to be used in simulation is unpacking [1].

2.2. Edge. Edges provide the method of information exchange between vertices (and
other edges), or endpoints for brevity. Like a vertex, edges also contain information about
state, parameters, events, and their equations. Unlike a vertex, however, a good portion
of the state and events that an edge process is external to that edge. This is because the
primary role of edges is to communicate state information that is local to the endpoints,
whereas the internal state of an edge is used to determine how that information is commu-
nicated. The connection that an edge makes is between a source list and a target list, with
each entry given an identifying name that may be referenced by the edge model. Although
the most common case for a connection is a single source and a single target, the use of lists
enables multiple branches for more complex connection modeling.

2.2.1. Edge Types. The most basic type of edge simply connects endpoints to end-
points, and is classified as a direct connection. Here, the set of sources and targets is taken
directly from the relevant lists, with the most common case being a one-to-one connection.
Although this type of connection can perform rudimentary handling of one-to-many, many-
to-one, and many-to-many connections, it is limited in that the set of sources and targets
is limited to precisely the length of their respective lists.

For communication between an endpoint and a subgraph containing vertex and edge
sets, we introduce the connection types broadcast and reduce. As their name suggest, the
broadcast connection type communicates information from a source endpoint list to a target
subgraph list. What this specifies is that all of the endpoints in the target subgraph get
connected to the source. Going the other way, from subgraphs onto endpoints, the con-
nection performs a reduction. Again, the connection is resolved down to the vertex and
edge sets of the subgraph at one end, the source this time. These broadcast and reduce
connection types find use in collective operations on the graph, with top-down control being
a particular use-case on one side, and collective analysis on the other. Edges that operate
on subgraphs are also responsible for invoking structural dynamics.

A few special subgraphs that are made available to an endpoint is all of the edges that
connect to it: incoming, outgoing, and by class. In this way, even if an edge is direct, the

234 Graph Representation for Neural Networks

endpoint may address all of its connections in a collective fashion. This is particularly useful
for broadcasting a spike out to all of a neurons post-synaptic connections with a separate
process for broadcasting a spike out to all of its pre-synaptic connections, and for reducing
location information in the computation of nonlinear operations at a dendritic tree.

2.2.2. Augmentation by Edges. An important feature in specifying the construc-
tion of the graph is the ability of the edges to augment the state (and dynamics) of their
connections. Because vertices (e.g. a neuron) do not typically require external state in
their simulation, the specification of a vertex can more or less be considered ‘self-contained’.
However, when information is exchanged between vertices through an edge, additional state
may be required to model the full set of state dynamics. Examples of state augmentation
of a connection would be the introduction of intermediate computations, inputs into the
vertex, or modifications of existing state dynamics to events. Instead of specifying the neu-
ron model to accommodate the additional information needed during communication, the
burden of specification is placed on the connecting edge.

Although a typical use-case for state augmentation may be that of information exchange
between two vertices, we do not limit ourselves to this. An important scenario where it is
important to provide augmentation of edge state dynamics is in reward modulation. Here,
an event (e.g. the release of dopamine) acts to modify the behavior of existing edges rather
than the vertices. Through the use of subgraphs, an interaction such as this may be handled
through the association of a vertex to an edge set. As far as constructing the subgraph is
concerned, whereas vertex only sets may be determined at the same level as the graph first
defining those vertices, subgraphs containing a non-empty edge set must be constructed in
a higher-order graph. This is because there is a dependency on the existence of the edges
in the graph to construct the subgraph from.

2.2.3. Edge Connectivity. All communication can be framed as the sending and
receiving of messages between endpoints. How closely linked the information exchanged
between them determines the connectivity of the edge. Based on this, we may classify edges
as either local or remote. The standard connection is local, where information between the
endpoints such as state and events may be shared. For state information, this occurs at
a prescribed rate, such as after a set amount of integration, either at fixed time intervals,
change in the state’s value, or both. The classification of a local connection as far as
simulation is concerned, provides a preference of an edge to remain on the same computation
node such that it may take advantage of any shared memory. For remote connections, the
information exchange is restricted to event-based communication only, compared to local
connections which may transmit state information. Unlike state, the exchange of events is
expected to occur much more sporadically, at the occurrence of the events. In simulation,
the preference for vertices to reside on the same computation node of remote edges is relaxed
from that of local edges, with the aim of reducing the amount of inter-node communication
as much as possible.

2.3. Graph. As mentioned in the overview, the purpose of the graph component is to
define the vertex sets and determine the relevant edges (to be provided as an edge set). The
structural information given in a graph is specified in terms of its vertices and edges at a basic
level, where each element may be referenced by a given id. Additionally, a graph may define
subgraphs and associations at an abstracted level for more compact specification. Although
graphs are used to tell the simulator what gets simulated, the vertices and edges, the graph
component does not contain its own state or parametrization, and don’t evolve according to
any set of state dynamics. Rather the ‘state’ of a graph is its structure, represented in terms
of its vertex and edge sets. How this structure may change in the course of a simulation is

F. Wang and F. Rothganger 235

an important process to study and methods for specifying structural dynamics are given in
sec. 2.3.5.

2.3.1. Vertex Definitions. In the construction of a graph, we first define the vertex
sets, taken from the vertex component in sec. 2.1. Any parameters or state dynamics may
be overwritten during this definition according to sec. 2.1.2. Vertices defined by a graph
take from vertices (or graphs) defined previously, and are given a new name or alias to be
used for reference. Furthermore, the graph may perform any initialization of state of the
vertex that may or may not have already been specified. For vertices that specify other
graphs, there is no additional initialization procedure (the expectation is that the vertex
initialization has already been performed). When a vertex is defined in a graph, it may take
on additional structural information such as position in space. This spatial information may
then be used to provide any spatially dependent connectivity rules.

Although vertices may be defined and instantiated on a vertex-by-vertex basis, this
becomes intractable for large neural networks. Rather, populations of vertices may be
specified where a particular vertex model is copied or replicated a given number of times
specified by the order. As with individual vertices, populations are also given a name. To
differentiate between the vertices of a population, each member is given an index, which
is unique on a per-population or per-subgraph basis. For vertices in a population, the
initialization of state and position is performed on a per-vertex basis.

2.3.2. Edge Binding. Perhaps the most important function of the graph is to specify
how information is exchanged between vertices and edges. This is performed by binding
external states and events to their respective destinations. The first step of this process
is to bind the endpoints in terms of source and target lists. For direct edges, this may
be performed on single and populations of vertices. Here, all combinations of vertices at
their respective endpoints are iterated over to determine if a connection should be made.
This determination is computed according to a ruleset of equations that produces a boolean
true/false value or probability p ∈ [0, 1], where 0 (or false) implies no connectivity, and
1 (or true) implies certain connectivity. There may be multiple equations in a ruleset,
each providing its own value. Treating each condition as independent from one another,
these values are all multiplied to generate a final probability. Because edges may access the
structural information of its endpoints, connection rules according to spatial locality may
be readily generated. The other edge types, reduce or broadcast, must be performed by
supplementing the source or target, respectively, list with subgraphs, where a population is
a special type of subgraph that contains only a vertex set. After determining if a connection
is created, any external state or events must be resolved, either from edge to endpoint, or
vice-versa. In the case of a local edge, this resolution may also bind the state of one endpoint
to the state of another endpoint through augmentation (sec. 2.2.2).

2.3.3. Subgraph. Subgraphs provide a level of abstraction on top of graphs, enabling
the construction of more complex structure in a compact manner. Unlike a graph, a sub-
graph may not define its own vertex sets. Rather, subgraphs obtain their sets of vertices
and edges from an existing graph or subgraph. Accordingly, the order of construction of
subgraphs is important: the vertex or edge set that a subgraph is conditioned over must
already be defined. This means that while a subgraph may be constructed from vertices at
the same level as the graph that defined those vertices, a subgraph may not be constructed
from any of the edges that would be determined by that graph. A subgraph containing a
non-empty edge set must be constructed at a level above the construction of the graph it
is conditioned over (i.e. in a graph of graphs). This provides a well structured containment
order for processes like structural dynamics.

236 Graph Representation for Neural Networks

The general construction of a subgraph is performed in a set-theoretic manner. From an
existing vertex and edge set, we generate a subgraph by performing an intersection with a
number of specified properties. As an example, we may have S = {G | P1, P2, . . . , Pn}, where
S is the subgraph, G provides the vertex and edge set of graph G, and Pi for i = 1, . . . , n
are the set of properties to condition over. This is similar to the evaluation of a ruleset
for binding edges, and shared by systems such as Neurons to Algorithms and Connection-
Set Algebra [8, 4]. The term population from before may be used to refer to a subgraph
containing only vertices, and populations of vertices may be treated as its own subgraph.
The spanning subgraph, or span of a (sub)graph is particularly useful in the construction
process, and contains all the vertices that are defined by that (sub)graph. During the
construction process, the span of a (sub)graph is grown according to each instantiation of a
vertex. An induced subgraph may also be generated from a graph by conditioning over its
span with a vertex set or population.

2.3.4. Association. Whereas vertices are connected by edges, subgraphs are associ-
ated by schemes. As an extension to connections that are specified by edges, association
schemes specify more complex connections across the vertex and edge sets of subgraphs.
This is more of an all-to-all connection as opposed to the direct, reduce, and broadcast edge
types found in sec. 2.2.1. However, associations use the more basic edge types to perform
the underlying connectivity, and there is never a case where a subgraph is directly connected
to another subgraph. Just as with the abstraction of subgraphs, associations also do not
contain any of its own state or parametrization. Rather, associations contain a number
edges and their rulesets. Additionally, associations may contain (intermediate) subgraph
definitions that permit more complex interconnectivity among the vertices of the source
and target subgraphs. All the binding of state and augmentation of the endpoints is defined
by an association just as the graph would define its edges (sec. 2.3.2).

2.3.5. Structural Dynamics. Although graphs and subgraphs don’t contain their
own state, they do provide important structural information that may be used in the sim-
ulation and study of structural dynamics. Information such as the order and position of
the vertices of a subgraph may be referenced in the reduction operation of a collective or
higher-order vertex and modified accordingly. Information about the size and bindings of
the edge set may also be referenced and modified. The class and index of each vertex or
edge is also available. In a sense, the subgraph may be thought of as a collection of point-
ers to the simulated objects, the vertices and edges. To some extent, this borrows from
Charm++’s distinction between data- and work-units, where certain logical elements are
responsible for the storage of state and structure and others are responsible mainly for the
computation, respectively [1]. This is an idea that is heavily utilized in NAMD (NAnoscale
Molecular Dynamics program) [7].

Events may modify vertex and edge sets of subgraphs, and contain the standard initial-
ization procedures of state (like the vertex constructor in a graph). This, in turn, modifies
the underlying graph, as well as any related subgraphs. Again, here is where the contain-
ment order of subgraphs is important in determining how they are affected by structural
changes. When a vertex is added to a subgraph, that vertex is also added to any enclosing
subgraphs (e.g. the span of a graph). Any subgraphs that are enclosed match the new vertex
against its set of properties to determine if it should be added. For the addition of edges, a
similar process is performed. Unlike vertices, however, edges may be added without actually
updating any of the subgraphs of a graph. This is because it is possible for the subgraphs
of a graph to be only populations. Rather, an edge generated at the same level of the graph
simply adds to the adjacency lists of relevant endpoints. Higher-order graphs will see the
edge in any subgraphs it is a member of, however (e.g. lower-order-graph.span.induced).

F. Wang and F. Rothganger 237

Structural events include the birth or death of a vertex (or population of vertices), and
whether to attach or detach endpoints through an edge. These events occur as a result
of network ‘growing rules’ that are generated by a higher-order vertex, but defined by the
encapsulated subgraph. These definitions follow the same definitions of vertices and edges
presented in sec. 2.1 and 2.2. Here, the source and targets of an edge are provided specific
endpoint instances. The ability to create or remove a subgraph and to acquire or forget
an association may also be useful. Presumably, these would come into play in the birth of
a higher-order vertex. Because of the structural dynamics, any potential edge connections
to an endpoint is preemptively augmented such that it will be ready when a new binding
occurs.

Another important process to model is the maturation of a growing neuron, where the
otherwise constant parameter values have not settled yet. To accommodate this, the vertex
class for that neuron contains considerably more state than the mature version, where the
state reflects the changing parameters. As the neuron matures (indicated by its age), it
may change or transform to a different vertex class. Similar to initialization, the new vertex
takes values from the old vertex (through bindings if not immediately apparent). Any values
that are missing from the old vertex must be initialized, and any values not present in the
new vertex are effectively dropped (such as the age).

238 Graph Representation for Neural Networks

REFERENCES

[1] B. Acun et al., Parallel programming with migratable objects: Charm++ in practice, in High Perfor-
mance Computing, Netwroking, Storage, and Analysis, SC14: International Conference for, IEEE,
November 2014, pp. 647–58.

[2] P. W. Anderson, More is different, Science, 177 (1972), pp. 393–6.
[3] S. Crook et al., Creating, documenting and sharing network models, Network, 23 (2012), pp. 131–49.
[4] M. Djurfeldt, A. P. Davison, and J. M. Eppler, Efficient generation of connectivity in neuronal

networks from simulator-independent descriptions, Frontiers in Neuroinformatics, 8 (2014), pp. 1–
11.

[5] E. Nordlie, M.-O. Gewaltig, and H. E. Plesser, Towards reproducible descriptions of neuronal
network models, PLoS Computational Biology, 5 (2009), p. e1000456.

[6] B. Oksendal, Stochastic Differential Equations, Springer-Verlag, 5 ed., 2002.
[7] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel,

L. Kalé, and K. Schulten, Scalable molecular dynamics with namd, J. Computational Chemistry,
26 (2005), pp. 1781–1802.

[8] F. Rothganger, C. E. Warrender, D. Trumbo, and J. B. Aimone, N2a: a computational tool for
modeling from neurons to algorithms, Frontiers in Neural Circuits, 8 (2014), pp. 1–12.

A.M. Bradley and M.L. Parks 239

Software and High Performance Computing

The articles in this section discuss the implementation of high performance computing
(HPC) and productivity software. Among the HPC reports, a common theme is the use of
Kokkos. Kokkos is a programming model and C++ library enabling multithreaded C++
code to be performance portable across many-core architectures, such as conventional mul-
ticore CPUs, the Intel Many Integrated Core coprocessor (MIC), and graphical processing
units (GPU).

Bookey, Demeshko, Rajamanickam, and Heroux describe their performance-portable
reference implementation of the High Performance Conjugate Gradient Benchmark (HPCG)
using Kokkos. Their report focuses on three parallel implementations of the triangular solve
kernel that implements the symmetric Gauss-Seidel preconditioner: level scheduling, graph
coloring, and an inexact Jacobi iteration.

Champsaur and Lofstead explore components to enable in-memory, flexible workflows
for disparate scientific codes. They use the molecular dynamics code LAMMPS and the
mini-app GTCP, a proxy for the particle-in-cell Tokamak simulator GTC.

Diamond and Devine integrate capabilities in Trilinos’s Zoltan2 and RPI SCOREC’s
ParMA. ParMA performs diffusive load balancing directly on a SCOREC PUMI mesh. They
provide an interface to ParMA in Zoltan2, and they implement a mesh adapter to make
Zoltan2 available to SCOREC. Then they use these new capabilities to apply Zoltan2’s
hypergraph partitioning and ParMA’s diffusive load balancing to two problems that use the
PUMI mesh database.

Eberhardt and Hoemmen describe block Compressed Sparse Row (CSR) matrix-vector
multiplication algorithms. They implement these using Kokkos and measure performance
on conventional CPU, Intel MIC, and GPU architectures.

Eller and Edwards design, implement, and assess the performance of a thread scalable
concurrent unordered map. This map is part of Kokkos’s containers library.

Furst, Prokopenko, and Hu implement an adapter in MueLu for the NVIDIA AMGX
algebraic multigrid GPU library and compare AMGX and MueLu performance on a single
node.

Held and Bradley develop a correctness and performance assessment framework for a
prototype multithreaded sparse triangular solver. The framework assembles a large test set
of matrices from the University of Florida Sparse Matrix Collection, factorizes them, and
writes data files as input to a test driver. Then it parses driver output to assemble results.

Kelley, Siefert, and Tuminaro implement a visualization tool to analyze the aggregation
process in MueLu. It can be optionally run during the hierarchy setup and directly outputs
parallel VTK files for viewing in ParaView.

Kumar and Hammond use the Structural Simulation Toolkit (SST) to model and analyze
the performance of the compressible multiphase turbulence code CMT-nek. They focus on
how the communication algorithms perform as the machine and problem sizes grow. They
use SST Motifs to model the behavior of the network end points.

Lohrmann and Widener describe a new operator implemented in the EVPath communi-
cation middleware system. They discuss its application to a directory service for registering
callback handlers and to SmartPointer, a LAMMPS data analysis program.

Morales, Littlewood, and Moore parallelize the Neohookean material model in ALbany’s
Laboratory for Computational Mechanics (LCM) using Kokkos. They measure speedup on
a GPU relative to serial execution on a conventional CPU.

Munn and Moreland develop a mini-app focused on reference MPI and OpenMP imple-
mentations of the Marching Cubes algorithms. The Marching Cubes algorithm is applied

240 CR Summer Proceedings 2015

to image voxels to extract a triangulated isosurface. Their report provides background on
the algorithm and then describes software design and data structure details of their imple-
mentations.

Raitses and Grant use the PowerAPI, a portable library abstracting access to vendor-
specific power measurement tools, to profile MiniMD, a mini-app proxy to the molecular
dynamics code LAMMPS. They find that MiniMD has a power profile similar to LAMMPS
and so is a useful proxy for studying mechanisms to monitor and adjust power usage relevant
to LAMMPS.

Staten, Carpenter, and Robinson describe a graphical user interface (GUI) to visualize
unstructured triangular equation of state tables. A visualization tool can help with equation
of state model development.

A.M. Bradley
M.L. Parks

December 18, 2015

CCR Summer Proceedings 2015 241

PERFORMANCE PORTABLE HIGH PERFORMANCE CONJUGATE
GRADIENT BENCHMARK

ZACHARY A. BOOKEY∗, IRINA P. DEMESHKO† , SIVASANKARAN RAJAMANICKAM‡ , AND

MICHAEL A. HEROUX§

Abstract. The High Performance Conjugate Gradient Benchmark (HPCG) is an international project
to create a more appropriate benchmark test for the world’s largest computers. The current LINPACK
benchmark, which is the standard for measuring the performance of the top 500 fastest computers in the
world, is moving computers in a direction that is no longer beneficial to many important parallel applications.
HPCG is designed to exercise computations and data access patterns more commonly found in applications.
The reference version of HPCG exploitx only some parallelism available on existing supercomputers and
the main focus of this work was to create a performance portable version of HPCG that gives reasonable
performance on hybrid architectures.

1. Introduction. The High Performance Conjugate Gradient (HPCG)[5][4] is emerg-
ing as a complement to the High Performance Linpack (HPL) benchmark for ranking the
top computing systems in the world. HPCG uses a preconditioned conjugate gradient to
solve a system of equations, that executes both dense computations with high computational
intensity and computations with low computational intensity such as sparse matrix-matrix
multiplications.

The goal of our project was to create a performance portable version of HPCG that
gives reasonable performance on all existing supercomputers. We choose Kokkos[2] library
from Trilinos[3] as a tool to provide performance portability in HPCG code.

2. HPCG. HPCG is a new and upcoming benchmark test to rank the world’s largest
computers. On top of solving a large system of equations, HPCG also features a more irreg-
ular data access pattern so that data access affects results as well as matrix computations.

HPCG begins by creating a symmetric positive definite matrix and its corresponding
multigrid to be used in the preconditioning phase. For the preconditioner it uses a Sym-
metric Gauss-Seidel forward sweep and back sweep to solve the lower and upper triangular
matrices. For the actual solve of Ax = b, HPCG uses the conjugate gradient method after
the preconditioning phase. HPCG runs in seven major phases.

1. Problem Setup: This is the beginning of HPCG and is where we construct the
geometry that is used to generate the problem. HPCG generates a symmetric,
positive definite, sparse matrix with up to 27 nonzero entries per row depending on
the local location of the row.

2. Validation Testing: This portion of the program is to make sure any changes
made produce valid results. Specifically it checks to make sure that both the un-
preconditioned and preconditioned conjugate gradient converge in around 12 and
2 iterations respectively. It also makes sure that after performing both a sparse
matrix vector multiplication and a symmetric Gauss-Seidel sweep that we preserve
symmetry by using two randomly filled vectors and performing simple operations
that should be zero due to the nature of our symmetric matrix A.

3. Reference Sparse Matrix Vector Multiplication and Multigrid Timing:
This portion of the code times how long it takes to perform the reference versions
of SPMV and Symmetric Gauss-Seidel.

∗St. John’s University, zabookey@csbsju.edu
†Sandia National Laboratories, ipdemes@sandia.gov
‡Sandia National Laboratories, srajama@sandia.gov
§Sandia National Laboratories, maherou@sandia.gov; St. John’s University, mheroux@csbsju.edu

242 Performance Portable High Performance Conjugate Gradient Benchmark

4. Reference Conjugate Gradient Timing: Here we run 50 iterations of the ref-
erence version of the conjugate gradient method and record the resulting residual.
This residual must be attained by the optimized version of conjugate gradient no
matter how many iterations are required.

5. Optimized Conjugate Gradient Setup: Runs one set of the optimized conju-
gate gradient and determines the number of iterations required to reach the residual
found before. Then figures out how mamy times to reach the desired residual to fill
in the requested benchmark time.

6. Optimized Conjugate Gradient Timing: Runs the optimized conjugate gra-
dient the required amount of times. Records time for each timed section to report
out later.

7. Report Results: Writes out log files for debugging and creates the .yaml file to
display the results which can then be submitted if all the requirements are met.

HPCG gives you the option to run with MPI, OpenMP, both, or in serial. Running with
MPI adds an extra dimension to the problem and requires processes to exchange values
on their borders to perform. This results in a trade-off between more overhead and more
parallelism.

3. Kokkos. As computer architectures differ in their features for best parallel per-
formance it has become increasingly difficult to write code that will perform well across
many different types of architectures. One solution to this problem is the C++ package,
Kokkos. Kokkos acts as a wrapper around your code to allow you to specify at compile time
where and how you want to run your application. Kokkos executes computational kernels
in fine-grain data parallel within an Execution space. Currently Kokkos supports the
following Execution spaces:

• Serial
• PThreads[6]
• OpenMP[8]
• Cuda[7]

Kokkos has two main features: Kokkos::View polymorphic Multidimensional Arrays
and parallel dispatch. Kokkos::View is essentially a wrapper around an array of data
that gives you the option to specify which Execution space you want to store the data
on and allows you to choose what sort of memory access traits you wish this data to have.
Kokkos::View also handle their own memory management via reference counting so that
the view automatically deallocates itself when all of the variables that reference it go out of
scope, thus making memory management much simpler across multiple devices.

There are three main parallel dispatch operations in Kokkos: parallel for, parallel reduce,
and parallel scan. All of these serve their own purpose and act as wrappers over how
you would execute a section of code in parallel over the respective Execution space. For
all of the data parallel executions kernels you initiate the kernel by passing in a functor that
performs the desired parallel operation, such as from host to device.

Parallel for is simply a generic for loop that will run all of the context of the loop
in parallel. This works well for parallel kernels like vector addition.

Parallel reduce is for simultaneously updating a single value, this function guar-
antees that you avoid race conditions with the updated values. Parallel reduce works
well for parallel kernels like finding the dot product of two vectors.

Parallel scan is for taking a view and creating a running sum of values to replace
the values of the view. Although parallel scan is useful it was only really needed for
setup phases in our HPCG.

Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux 243

One of the useful features of Kokkos is that parallel operations can be nested. This
allows us to run up to three level parallelism inside a single kernel. This happens by creating
a league of thread teams so that each team of threads has a specified number of threads.
Then we can assign vector lanes to each thread that can run in parallel as well. This allows
us to call a parallel kernel on the league and then another parallel kernel on the teams and
finally a parallel kernel on the vector lanes of the thread. Depending on the type of problem
nested parallelism can significantly improve performance of the Kokkos kernels, but, at the
same time, is introduces some overheads that can be significant for the problems with no
enough parallelism. We’ll explore this further in HPCG later.

4. HPCG + Kokkos. The goal for our project was to create a version of HPCG
that produces valid results across many architectures without sacrificing performance. We
believe that Kokkos library is the best available tool to provide performance portability for
the C++ code, we choose to re-factor HPCG to use it.

General strategy for Kokkos re-factoring includes:
• Replace custom data types with Kokkos multidimensional arrays;
• Replace the parallel loops with Kokkos parallel kernels;
• Code optimizations to improve usage of co-processors.

4.1. Replacement of custom data types with Kokkos multidimensional ar-
rays. Restructuring the code involved a whole rewrite of HPCG to change how all of the
structs stored their values. We replaced every array that would be used in a parallel kernel
with an appropriate Kokkos::View. Once this was functional we had to go back to some
of the compute algorithms and change how the data was accessed as to not try to access
device data from the host or the other way around.

While restructuring we decided to change how our SparseMatrix stored the data and
implemented it as a sort of overlying structure on top of a Kokkos CSRMatrix. This change
required us to again go back and change how most of our computational kernels worked and
created a noticeable increase in performance. At this point the code was functional across
all of Kokkos execution spaces but took a severe performance hit while trying to run on
Cuda.

4.2. Replacement of the parallel loops with Kokkos parallel kernels. Re-
writing the parallel kernels involved replacing the parallel loops with the correct type of
Kokkos parallel kernel. This part of re-factoring was heavily focused on converting the
computation algorithms into functors and lambdas. Completing this task didn’t affect
portability at all and due to some Kokkos restrictions actually caused a slight reduction
of performance in the function ComputeResidual. Other kernels would later have to be
changed to accommodate the fact that data was stored on a device but was being run on
the host.

An example of “nested loop to Kokkos” kernel conversion is presented in the Figure 4.1.
Here we replace outer loop with the Kokkos::parallel for and put internal part of the
loop to the Kokkos kernel (see right part of the Figure 4.1).

Computing the preconditioner using a symmetric Gauss-Seidel was initially done in
serial and thus moving to Kokkos required us to copy memory from the device to the host
every time we ran it, which was the reason performance was lost. We tried implementing
many different ways to perform a sweep of symmetric Gauss-Seidel in parallel to eliminate
the need of copying data. We implemented an inexact solve, a level solve, and a coloring
algorithm.

The inexact solve1 works by performing a few triangular matrix solves. We split our

1We understand that the inexact solve violates the policies of the benchmark, but is included for com-

244 Performance Portable High Performance Conjugate Gradient Benchmark

Fig. 4.1: An example of “nested loop to Kokkos kernel” conversion.

matrix A into parts L, U , and D where L is the lower triangular matrix including the
diagonal, U is the upper triangular matrix including the diagonal and D is the diagonal.
The inexact solve is done by solving three different equations. Given our problem Ax = b, to
simulate a symmetric Gauss-Seidel sweep we solve Lz = b then Dw = z and finally Ux = w.
All of these solves are done using a parallel Jacobi solve. Although this version of symmetric
Gauss-Seidel is run in parallel and avoid all device to host memory copies it still performs
slowly since each Jacobi solve needs to be run a certain number of sweeps depending on
problem density and results in more parallel kernels being launched than is ideal.

Our level solve algorithm splits our matrix A into parts L, U , and D where L is the
lower triangular part of A that includes the diagonal, U is similar to L since it is just the
upper triangular part of A that includes the diagonal. D is just the diagonal of A. For this
algorithm we introduce another data structure, levels, to our SparseMatrix that stores all of
the data needed for sorting the matrix. When we optimize the problem we find dependencies
in solving for L and sort based on those dependencies in a way that a row will only be solved
if all of its dependencies have been solved. We repeat this process for solving for A and
store all of this data into levels. Now when we compute our Symmetric Gauss-Seidel we
solve just like we do for the inexact solve except we start by solving for the rows in level 1
in parallel and then the rows in level 2 in parallel and repeat until we solve all of our levels.
In the end we have a Symmetric Gauss-Seidel that has introduced a deal of parallelism and
performs well compared to the original implementation. At the time of writing our coloring
algorithm is not fully implemented. We are in the process of finishing it to provide it as
part of HPCG+Kokkos implementation. The algorithm works by coloring our matrix A so
that all rows with a certain color have no dependencies on one another. This way we can
run a sweep of symmetric Gauss-Seidel in parallel over each color. While similar to the level
solve, this method requires more iterations to converge due to the fact that although no two
rows in the same color depend on each other it is likely that they depend on a row in a color
that will be solved in a later iteration.

parison anyways.

Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux 245

5. Performance evaluation. We evaluate performance for our implementation of
the HPCG code on our Shannon testbed cluster. Shannon has 32 nodes with 2 Intel Sandy
Bridge CPUs and 2 Nvidia K40/K80 GPUs per node.

Comparing different variations of the preconditioner requires us to consider different
problem sizes since some of our implementations will perform better on larger more sparse
matrices than they will on smaller and denser matrices.

As you can see in Table 5.1 the standard version of symmetric Gauss-Seidel performs
best since the level solve and the inexact solve only have limited parallelism. This is due
to the fact that there aren’t enough non-dependent rows to provide sufficient parallelism
on each level and the inexact solve needs 18 iterations to get a solution for each triangular
matrix that is close enough to the exact solution to maintain symmetry.

Standard SYMGS Level Solve Inexact Jacobi Solve
Cuda (Shannon) 0.408776 0.0634977 0.091606

OpenMP (Shannon) 1.67202 0.233525 0.295145
Serial (Shannon) 1.46676 0.22152 0.269744

Table 5.1: GFLOPS Results for various SYMGS on Problem Size 163

As seen in Table 5.2 the level solve begins to become the optimal preconditioner. This
is similar to the issue with size 163 where now our matrix is large and sparse enough that
the level solve starts to see an increased amount of parallelism. The inexact method still
lags behind since even though our matrix is less dense it still needs 12 Jacobi iterations to
have a solution exact enough to pass the symmetry test.

Standard SYMGS Level Solve Inexact Jacobi Solve
Cuda (Shannon) 0.64954 0.720434 0.560632

OpenMP (Shannon) 1.76462 2.42687 0.97734
Serial (Shannon) 1.45816 1.56839 0.485523

Table 5.2: GFLOPS Results for various SYMGS on Problem Size 643

Table 5.3 shows us still that level solve is our most optimal preconditioner for similar
reasons as stated before. However it makes sense to note that the inexact solve is steadily
increasing performance as we our problem size increases. With a problem size of 1283 we
only need 5 jacobi iterations to achieve a near exact solution to each triangular solve.

Standard SYMGS Level Solve Inexact Jacobi Solve
Cuda (Shannon) 0.660526 2.1373 1.39231

OpenMP (Shannon) 1.82678 4.19081 1.84878
Serial (Shannon) 1.49575 2.18794 0.810011

Table 5.3: GFLOPS Results for various SYMGS on Problem Size 1283

In Table 5.4 we tested our preconditioning algorithms on a problem size of 1923. As
expected our standard Gauss-Seidel performed at the same level as before and our level
solve starts to slow down its performance increases. The inexact solve left us with some

246 Performance Portable High Performance Conjugate Gradient Benchmark

abnormally high results that remained valid. For executing on OpenMP we witnessed results
of 100+ GFLOPS and for Cuda we found high 90’s. We are still investigating what may
have caused these results.

Standard SYMGS Level Solve Inexact Jacobi Solve
Cuda (Shannon) 0.659346 2.89654 ???

OpenMP (Shannon) 1.842 4.858 ???
Serial (Shannon) 1.5048 2.37896 ???

Table 5.4: GFLOPS Results for various SYMGS on Problem Size 1923

Now we’re going to look at how each preconditioning algorithm performs overall on each
execution space.

As seen in Fig 5.1(a) the vanilla symmetric Gauss-Seidel is dominant on the non-cuda
execution spaces. This has to do with the fact every time this method is called we had to
run a lot of memory copies between the host and device. When we aren’t using Cuda all of
our memory is located in one space and thus the memory copying is avoided and we don’t
see a huge performance hindrance.

In Fig 5.1(b) the results between execution spaces while using the level solve precon-
ditioning method vary quite a bit. First, notice that there is a trend with the results and
it appears that our max performance received from this preconditioner starts to taper off.
With this trend in mind it appears that OpenMP will achieve better performance using
this preconditioner than Cuda. However this could be because we haven’t done much cuda
optimizations in terms of memory.

Looking at Fig 5.1(c) it seems we have a trend that increases our performance based on
problem size. We are confident this has to do with the fact that when our problem size is
larger our matrix is less dense and so we need less jacobi iterations to produce an answer
exact enough to pass the symmetry tests. However we opt to leave out problem size 1923

due to the abnormal results mentioned before.

Fig. 5.1: Plots of GFLOPS over the Various SYMGS Algorithms

5.1. Optimizations. Aside from the symmetric Gauss-Seidel optimizations already
made, we are looking to further these optimizations in the future by exploiting hierarchical
parallelism. For example, in the inexact solve we can implement a three level parallelism
technique that breaks our rows into chunks that a team of threads each gets assigned. Now
our teams of threads work on our chunk while in parallel we perform the matrix vector

Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux 247

computation in parallel using the threads in the team. A near identical method can be
applied to our level solve algorithm but since the level solve deals with fewer rows at a time
we won’t see as much of a performance increase in here. We’re confident that these aren’t
the only places that can benefit from hierarchical parallelism and we plan to explore these
options at a later time.

If we start by looking at our original LowerTrisolve kernel used in the inexact solve
algorithm (see Figure 4.1) we see that there is a for loop inside of our parallel kernel that
doesn’t update any outer values and could benefit from being parallelized. If you are even
more clever you can take advantage of the third level by assigning chunks to teams as
described above. Thus taking full advantage of three level parallelism we are left with the
following.

Below is a code snippet that demonstrates how we used Kokkos hierarchical parallelism
in the lower trisolve kernel for the inexact solve version of the symmetric Gauss-Seidel.

class LowerTrisolve{
public:
local_matrix_type A;
const_int_1d_type diag;
const_double_1d_type r;
double_1d_type z_new;
double_1d_type z_old;
int localNumberOfRows;
int rpt = rows_per_team;

LowerTrisolve(const local_matrix_type& A_,const const_int_1d_type&
diag_, const const_double_1d_type& r_,

double_1d_type& z_new_, const double_1d_type& z_old_, const int
localNumberOfRows_):

A(A_), diag(diag_), r(r_), z_new(z_new_), z_old(z_old_),
localNumberOfRows(localNumberOfRows_){

Kokkos::deep_copy(z_old, z_new);
}

KOKKOS_INLINE_FUNCTION
void operator()(const team_member & thread) const{

int row_indx=thread.league_rank()* rpt;
Kokkos::parallel_for(Kokkos::TeamThreadRange(thread, row_indx,

row_indx+rpt), [=] (int& irow){
double rowDot = 0.0;
double z_tmp;
int diag_tmp;
diag_tmp=A.values(diag(irow));
z_tmp=r(irow)/diag_tmp;
z_tmp += z_old(irow);
const int k_start=A.graph.row_map(irow);
const int k_end=diag(irow)+1;
const int vector_range=k_end-k_start;
Kokkos::parallel_reduce(Kokkos::ThreadVectorRange(thread,

vector_range),
KOKKOS_LAMBDA(const int& lk, double& lrowDot){
const int k=k_start+lk;
lrowDot += A.values(k) * z_old(A.graph.entries(k));

}, rowDot);
z_tmp -=rowDot/diag_tmp;

248 Performance Portable High Performance Conjugate Gradient Benchmark

z_new(irow)=z_tmp;
});

}
};

..
const int team_size=localNumberOfRows/rows_per_team;
const team_policy policy(team_size , team_policy::team_size_max(

LowerTrisolve(A.localMatrix, A.matrixDiagonal, r.values, z, A.old,
localNumberOfRows)),vector_lenght);

Kokkos::parallel_for(policy, LowerTrisolve(A.localMatrix, A.
matrixDiagonal, r.values, z, A.old, localNumberOfRows));

Using the above implementation of nested parallelism in our inexact solve method for
symmetric gauss-seidel, we see performance results as in Figures 5.2, and Tables 5.5 and
5.6. It is clear that Cuda receives a huge benefit from this as it allows us to finely tune how
we want to parallelize this method. This nested implementation works as described above
and for our figures it chooses chunks of size n for a problem of size n3. This assures us that
we actually work with every row in our matrix and gives us decent results.

Fig. 5.2: Plot of GFLOPS for different vector lengths used in lowerTrisolve

Vector Levels: 1 2 4
N = 16 0.087516 0.0857736 0.0834751
N = 64 0.611932 1.41309 1.17325
N = 128 1.2713 3.51299 4.07047

Table 5.5: GFLOPS for Number of Levels and Problem Size N3 Affect Cuda Performance

These results are highly preliminary and we are going to investigate performance for
different combinations of the number of rows per team, vector length and problem size.

Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux 249

Vector Levels: 1 2 4
N = 16 0.110544 0.111938 0.111116
N = 64 0.50259 0.502229 0.495932
N = 128 1.09584 1.11385 1.11723

Table 5.6: GFLOPS for Number of Levels and Problem SizeN3 Affect OpenMP Performance

6. Conclusion. In the end we have worked towards creating a version of HPCG that
works alongside the Kokkos package found in Trilinos. This version of HPCG will be a
useful for being able to run the reference version of HPCG out of the box and not need to
configure the code to be compatible with the specific machine being benchmarked.

Our work here is not completed but we have made great headway on this project and
currently have code that produces similar results across all of the Kokkos execution spaces.
In the future we plan to fix a few performance bottlenecks and utilize hierarchical parallelism
to fully take advantage of Kokkos kernels.

We also plan to fix our coloring algorithm for the symmetric Gauss-Seidel so we can
choose at compile time which algorithm to use for preconditioning. It will be interesting to
compare performance between all of our preconditioning algorithms.

REFERENCES

[1] J. Dongarra and et al., Top 500 supercomputer sites. http://www.top500.org, 1999.
[2] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-

bility through polymorphic memory access patterns, Journal of Parallel and Distributed Computing,
(2014).

[3] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the
trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[4] M. A. Heroux and J. Dongarra, Toward a new metric for ranking high performance computing
systems, tech. rep., Sandia National Laboratories, 2013.

[5] M. A. Heroux, J. Dongarra, and P. Luszczek, Hpcg technical specification, Tech. Rep. SAND2013-
8752, Sandia National Laboratories, 2013.

[6] laise Barney, Posix threads programming. https://computing.llnl.gov/tutorials/
pthreads/.

[7] NVIDIA, Cuda programming guide version 3.0, tech. rep., Nvidia Corporation, 2010.
[8] OpenMP Architecture Review Board, OpenMP Application Program Interface, 1023.
[9] Y. Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics,

2003.

http://www.top500.org
https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/

CCR Summer Proceedings 2015 250

INSIGHTS FOR THE DESIGN AND USE OF GENERIC SCIENTIFIC
WORKFLOW COMPONENTS

ALEXIS P. CHAMPSAUR† AND GERALD F. LOFSTEAD, II‡

Abstract. In the context of scientific applications in the HPC space, real-time scientific workflows
reduce the need for writing large amounts of raw scientific data to disk and for the multiple exchanges
between analysis codes and disk often used in offline data analysis. However, even though many workflows
use similar calculations, assembling them is a complex task and modifying them requires significant effort,
since these are usually tightly linked codes designed for use with specific scientific applications.

As part of the Decaf project, we explore in this work the requirements of components that could be
linked together to assemble a wide variety of workflows driven by a variety of scientific codes. We present
insights in the design of such tools based on our implementation and use of 4 generic workflow components
assembled into two worklows, each driven by a different scientific code having a large user base.

1. Introduction. As HPC platforms approach exascale, the scientific applications that
run on them are allowing us to discover more information than ever before. However, scaling
these codes and the analytical components that are usually used with them to levels theo-
retically obtainable on today’s hardware presents significant challenges. Indeed, a majority
of simulations that target HPC platforms are still designed to write their output directly to
disk, with analysis performed offline (after the data has been written to disk), even if the
size of the data of value in the end is only a small fraction of that output by the simulation.
It is well-known that the I/O stages of these codes are bottlenecks in their performance [3]
[9]. The multiple I/O routines between simulation, data analytics, and disk often used in
this context take up valuable time and compute resources, and they limit the amount of in-
formation we can obtain from these applications. The development of parallel I/O methods
such as MPI-IO [8] and netCDF [4] has helped alleviate this problem by speeding up I/O
stages. However, these techniques in themselves do no address the discrepancy between the
sizes of raw simulation output and final results of value.

More recently, there has been significant effort in defining frameworks and developing
techniques that allow data processing codes to operate while the simulation is still producing
data. This is termed online analytics. The Adaptable I/O System (ADIOS) [5] was designed
in part to facilitate this by providing an abstraction of the data as a stream, rather than
only as files that exist on disk or in memory. Flexpath, an implementation of this stream-
based interface, allows simulation processes and various analytics processes to exchange data
in real time, regardless of their numbers or how they are arranged in the system. In-situ
methods [9] take advantage of locality by placing analytics on the same nodes as the processes
that produce the data. Such tools allow the creation of real-time scientific workflows, where
complex scientific computations are performed by linking together a number of concurrently
executing components.

Still, while some tools exist for stream-based processing, workflows that use online
analytics are still often designed ad hoc, with the same types of analytics often re-written
for various workflows. These workflows are usually tightly coupled: each component is
designed to receive data in exactly the format output by the previous component in the
flow. This approach has inherent disadvantages: (1) the same types of data manipulation
and analysis components are often re-written; (2) any desired modification to the workflow
requires complex changes to the code; (3) real-time adjustments to the workflow are not
possible. The Decaf Project [6], an ASCR data management project of which this work

†Georgia Institute of Technology, alexis.champsaur@gatech.edu
‡Sandia National Laboratories, gflofst@sandia.gov

A. Champsaur and G. Lofstead 251

is part of, aims to develop generic primitives that would allow scientists to piece together
workflows in a simplified and flexible way. Its main goal is to discover ways in which to
“loosen the grip of tight coupling” for the reasons just provided, and this is also the focus of
this work. In the Decaf project, we wish in the long term to allow for the automatic creation
of entire portions of workflows. Such “broadly applicable dataflows” [6] would be based on
higher-level decisions made by scientists who wish to construct workflows. This type of
functionality will require at its core a set of components that are adaptable to a variety of
data properties, that use consistent semantics, and that do not sacrifice performance. How
to approach the design of such components is what we explore in this research.

1.1. Contribution. In this work, we offer some insight in the design of generic data
manipulation and analysis components from our implementation of two workflows. These
workflows are driven by two different scientific codes, but they use some of the same com-
ponents. Our key insights are these: (1) to allow for the greatest variety of workflows,
data manipulation primitives and data analysis components should be packaged in simi-
lar ways — that is, regardless of their invidual complexity, the pieces that make up these
workflows should export compatible interfaces as much as possible; (2) the ability to handle
multi-dimensional data, along with the consistent labeling of dimensions and quantities as
meta-data, allows for components that are highly adaptable and simple to use; (3) while dif-
ferent types of components understand varying levels of semantics, maintaining a high level
of semantics (labeling quantities and dimensions as much as possible) early on and when
passing through components that do not necessarily require all of these labels allows for
the most functionality downstream; (4) because programming languages understand multi-
dimensional data as being in a specific order in memory, there is a need for components that
re-arrange data and re-label its dimensions without necessarily changing its size. Indeed,
when data is contained in a database on disk, it is simple to gain a desired view of the data,
for example by using SQL. However, in the middle of a real-time workflow, data must be
presented to the components in a format that they expect and understand. By allowing
workflow components to support any number of dimensions, by labeling these dimensions
consistently, and by developing components that re-arrange and re-label data, we can do
this in a generalizable fashion.

2. Design. We designed and implemented two real-time workflows based on scientific
codes having large user bases: the LAMMPS Newtonian particle simulator [7], and GTCP,
a proxy version of the particle-in-cell Tokamak simulator GTC [2]. While both of these
workflows eventually turn the simulation data into histograms of certain quantities of
interest, how they arrive at their final result varies significantly. Creating similar types of
results, and this using some of the same components but in significantly different ways has
allowed us to gain important insight into how best to design components that can be used
in a wide variety of workflows.

In the next few paragraphs, we first describe the workflows from a general point of view,
and then describe the individual components in greater detail.

2.1. Workflows. In the first workflow we implemented (Figure 2.1), LAMMPS out-
puts a number of quantities for each particle in the simulation at certain timestep intervals.
This corresponds to two-dimensional data, and among the output quantities are the three-
dimensional components of the particles’ velocities. Data arrives from LAMMPS at the
first component we designed, Select, which extracts these velocity components from the
data output by the simulation. From Select, data is sent to Magnitude, another of our com-
ponents, which computes the magnitudes of the velocities. In our current implementation,
Magnitude outputs one-dimensional data (an array of the magnitudes it calculates) to the

252 Generic Workflow Components

final component, Histogram, which expects one-dimensional data as input. The end result
of this workflow is a series of histograms of the total velocities of the particles. There is one
histogram created at each timestep at which the simulation would normally dump its data
to disk.

Fig. 2.1: LAMMPS Workflow

The second workflow (Figure 2.2) is driven by GTC, a code that simulates a toroidally
confined plasma. The simulation splits the solid into toroidal slices, each made up of a
number of grid points, and for each of these it outputs 7 properties of the plasma such as
pressure and energy flux. The output of the simulation is therefore a three-dimensional
array in which the indices represent: (a) toroidal rank (toroidal slice number), (b) grid
point number, and (c) property number (flux, parallel pressure, etc.). In our workflow,
data first arrives at an instance of Select, which extracts one quantity of interest out of the
7. This quantity is the “perpendicular pressure,” or pressure of the plasma perpendicular
to the flow in the grid point of interest. Even if it contains only perpendicular pressures,
the output of Select is still three-dimensional, since this component maintains the original
dimensions of its input. Because the Histogram component expects one-dimensional input,
we first send the output of Select through two instances of our Dim-Reduce component,
each of which eliminates a single dimension of the array without changing its total size. The
final component, Histogram, outputs a histogram of the perpendicular pressures of all grid
points at each timestep at which the simulation would normally output its data to disk.

2.2. Components. Even though we refer to the components as single entities, they
are distributed codes that know how to split computation among the processes of which
they are composed. They use ADIOS for both input and output, which allows them to
consider the data as a stream. Flexpath, which implements the stream-based data exchange
abstracted to the components through the ADIOS interface, is asynchronous, and allows for
data exchange between any number of writers and readers. Therefore:

1. We can launch components of the workflow in any order: downstream components
will wait for the availability of data from upstream components, and upstream
components will buffer data up to a certain size until they are able to send it
downstream. This also means that the decision as to which downstream components
to use can be made after the upstream components have started running, allowing
for real-time adjustments to the workflow based on results obtained upstream.

2. Even if the number of processes used for one component is different from that
used for the previous one in the workflow, each component can split the data (and
therefore the computation) evenly among its processes. We should mention, how-
ever, that due to the current implementation of Flexpath there is overhead data

A. Champsaur and G. Lofstead 253

Fig. 2.2: GTCP Workflow

exchanged when different numbers of writers and readers are used. Even if reader
R requests only a portion of writer W ’s data, the current implementation is such
that W sends all of its data to R.

In addition, ADIOS and its transports (such as Flexpath) keep track of the dimensions of
data and of the sizes of these dimensions. Therefore, when a component receives a multi-
dimensional array, it can discover the dimensions of the data and their sizes as defined by
the previous component in the workflow.

When using a component, one must specify the names of the input stream from which
to read, the array in the input stream, the output stream to which to write, and the name of
the array to use in the output stream. Referring to streams and arrays using names allows
users to easily chain together these components into potentially complex workflows. Certain
components require more information from the user. For example, Select must know from
which dimension to select the quantities of interest.

2.2.1. Select. Given an input array with any number of dimensions, Select extracts
certain indices from one of the dimensions and outputs an array with the same number of
dimensions, but with the dimension of interest having a smaller size. The output data of
this operator therefore has a smaller overall size than its input data. In order to select the
quantities of interest, the component uses a header which must be passed by the previous
component in the workflow. The header is a list of strings that name the quantities in
the dimension of interest. This allows easy selection of quantities at runtime when Select is
launched. For example, in the LAMMPS workflow, the simulation outputs the ID, Type, Vx,
Vy, and Vz of each particle, where Vx, Vy, and Vz are the components of the velocity of the
particle. Select discards the ID and Type of the particle, building a new array consisting only
of the velocity components of each particle. The user (or a higher-level dataflow assembler)
must pass to this component the index of the dimension from which to select.

2.2.2. Magnitude. In our current implementation, magnitude expects a two-dimensional
array as input, where one dimension spans the data points at each time step (particles in the
case of LAMMPS and grid points in the case of GTC), and the other dimension spans any
number of components of the same quantity, for example the three-dimensional components
of velocity in the LAMMPS workflow. Magnitude calculates the magnitudes of these quan-
tities from their components and outputs a one-dimensional array of new values. Which

254 Generic Workflow Components

dimension is which in the input array is specified by the user at runtime.

2.2.3. Dim-Reduce. As discussed previously, workflow components must receive data
in a format that they expect. For example, Histogram expects one-dimensional data. Dim-
Reduce is a data manipulation component that removes one dimension from its input array,
“absorbing” it into another dimension without modifying the total size of the data. The
other dimensions are left unchanged. This component can work with an input array having
any number of dimensions. The output is an array with one dimension removed, and with
another dimension that has been re-defined. We discuss this operator and the need for
it in more detail in Section 4. When using this component, the user must specify which
dimension to eliminate and which to grow.

2.2.4. Histogram. The processes that make up the Histogram component partition
among themselves a one-dimensional array of data. They communicate to discover the
global mininum and maximum values in the array, create a number of bins between these
two extremes, and then communicate again to count the number of values in the globally
partitioned array that fall in each bin. The number of bins to use must be passed to the
component when it is launched.

In our current implementation, one of the processes of Histogram writes the output
to a file on disk. We chose this approach because this component is generally used as an
endpoint in the workflow, and because the output of this component is generally small and
can be easily written by a single process. However, as we discuss later, letting this component
output its data in the same way as the other components (as an ADIOS stream), and instead
writing to disk when needed using a component specifically designed for this purpose would
provide greater flexibility.

2.3. Modification of the Simulation Code. In order to use some of the same
components in both workflows, we had to slightly modify the output stages of the scientific
codes driving them. Because in both workflows, the first component to receive the simulation
data is Select, each simulation has to write a header of its quantities in the dimension to be
selected from. Also, normally LAMMPS packs its two-dimensional output into a single array.
We modified this so as to let it write a two-dimensional array, which better describes the
output data and allows downstream components to better understand it. Both simulations
had to be modified to enable the use of ADIOS for output.

3. Evaluation.

3.1. LAMMPS workflow. We ran the LAMMPS workflow on the Rhea cluster [1] at
Oak Ridge National Laboratory, using a total of 100 nodes for the simulation and workflow
components alltogether. Each Rhea node is capable of running 16 concurrent processes.
The table below shows the distribution of processes in the workflow.

Number of
Particles

Total
Procs

LAMMPS
Procs

Select
Procs

Magnitude
Procs

Histogram
Procs

20,243,885 1600 800 288 256 256

Table 3.1: LAMMPS Worflow Execution, over 6 simulation write steps

We used data size as the primary factor in determining an appropriate number of pro-
cesses to use for the workflow components. The total output size of the simulation with this
configuration is approximately 0.95 GB per time step. With the above configuration, this
lets each Select process handle about 1.2 MB. While we statically determine the proportion
of processes to use for simulation and workflow components, a bash script appropriately

A. Champsaur and G. Lofstead 255

scales, distributes, and launches these processes as a single job for the PBS scheduler. In
the configuration we used, any node handles only one type of component, and entire nodes
are allocated to specific components. While in-situ computation is often advantageous [9],
it is not the preoccupation of this work and we decided to avoid it alltogether.

The time between the start of the simulation and end of the last histogram write was
73.57 s. In contrast, the time we measured for the simulation with the same configuration
to run and write all of its output directly to disk was 37.23 s. To truly determine the
advantage of such a workflow, we would have to time a similar offline workflow. However,
being able to obtain valuable results from real-time analysis in about twice as long as it
takes the simulation to run and write raw data directly to disk is promising in itself.

3.2. GTCP Workflow. We tested the GTCP workflow on the same cluster. This
time, we used a total of 128 nodes, distributed in the manner shown in table 3.2.

Grid
Points

Total
Procs

GTCP
Procs

Select
Procs

Dim-
Reduce1
Procs

Dim-
Reduce2
Procs

Histogram
Procs

73,770,780 2048 768 512 256 256 256

Table 3.2: GTCP Worflow Execution, over 5 simulation write steps

As an example of the data produced by this workflow, consider the histogram created at
time step 15:

Bin low Bin high Grid points
-0.023674 -0.019983 8
-0.019983 -0.016292 36
-0.016292 -0.012602 154
-0.012602 -0.008911 1188
-0.008911 -0.005220 15450
-0.005220 -0.001530 959515
-0.001530 0.002161 72410815
0.002161 0.005852 373301
0.005852 0.009542 9333
0.009542 0.013233 843
0.013233 0.016923 107
0.016923 0.020614 20
0.020614 0.024305 7
0.024305 0.027995 1
0.027995 0.031686 2

Table 3.3: Histogram of GTCP Perpendicular Velocities, Timestep 15

Obtaining such histograms from two very different simulations but using some of the
same components required adjusting in small steps the way the components worked so as to
make them fit in both workflows. This allowed us to gain a number of insights the design
of such tools.

4. Insights.

256 Generic Workflow Components

4.1. Multi-Dimensional Data Support. Many scientific codes serialize their out-
put, effectively packing multi-dimensional data into a single dimension. However, this tech-
nique offers little information on the data to downstream components in a workflow. In
the case of our LAMMPS workflow, for example, if we kept the simulation output one-
dimensional, downstream components would have to be specifically designed to read data
in this format, and such components could not be easily made to work with serialized data
having other formats. In our example, a separate component would have to be designed to
work with the output of GTCP.

In order to use the same Select component downstream from both LAMMPS and GTC,
we had to (a) modify the output of LAMMPS to let it output data in a format where
the dimensions are clearly defined, and (b) we had to design Select in such a way that it
understand input data having any number of dimensions. Indeed, even with the modification
to LAMMPS, the simulation’s output is two-dimensional, whereas the output of GTCP is
three-dimensional.

In general, it is advantageous to (1) design components that can operate on multi-
dimensional data as much as possible, and (2) format the ouput data of scientific appli-
cations as having well-defined dimensions. Emphasizing the support for multi-dimensional
data in the design of workflow components allows for maximum compatibility between the
interfaces of components by providing a consistent way to refer to the data. With Select
supporting any number of dimensions, the user can simply indicate at runtime which di-
mension to select from. Similarly, in Dim-Reduce, any dimension can “absorb” any other
dimension, as long as these dimensions are correctly specified by the user. Such functionality
increases the generic quality of these components and simplifies their use. In our implemen-
tation, Magnitude expects two-dimensional data, but allowing this component to support
any number of dimensions would be both feasible and advantageous.

Still, while multi-dimensional data support provides a consistent way to refer to the
data, not all components should be designed so as to work with any number of dimen-
sions. For example, we found it advantageous to design Histogram to work with only one
dimension. Creating a histogram is a calculation that makes sense for one-dimensional data,
and supporting a higher number of dimensions would add unnecessary complexity this com-
ponent. If the data has more dimensions than are expected, or if only certain indices in
one dimension hold values of interest, we can use the Dim-Reduce and Select components
to properly format the data for Histogram, as we do in the GTCP workflow.

4.2. Semantics. When data is organized under clearly defined dimensions, labeling
these dimensions as the data goes through each component lets downstream subscribers refer
to dimensions using their names. Because the data is potentially re-sized and re-arranged
in the course of a workflow, it is useful to maintain such semantics as much as possible.
However, the absence of labels should not block the workflow execution. We did not label
dimensions in the components and workflows we implemented, rather refering to them by
number, but this optional functionality can be easily added and the advantage of doing so
in the development of more complex workflows is clear.

In both workflows, we do however label the quantities in one of the dimensions so that
the Select component can extract some of these quantities using their names. These names
are concatenated into a “header string” using a well-known character as a separator. Because
Select is used as the first analytical component in both workflows, we are only concerned
with the existence of this header in the simulations and in the Select components. We write
this header in the output of the simulations and read it when the data arrives at Select.
Using Select further downstream poses a problem, however. In our current implementation,
knowning which quantities to select requires such a header, and ensuring the existence of this

A. Champsaur and G. Lofstead 257

header at any point downstream would require labeling all quantities at every component,
which would be highly impractical. As a solution, we suggest providing a choice to the user
between using a header and using index numbers to select quantities. Then, if the header
exists, the quantities’ names can be used, and if Select needs to be used downstream and
there is no header describing the quantities, the user can provide the indices of the quantities
to select. We see here that labels should be used as much as possible, but that they should
also be kept optional.

4.3. Dimension Reduction (Dim-Reduce). In the context of scientific workflows,
there are some situations where it is desirable to eliminate one of the dimensions of a multi-
dimensional array without losing any of the values stored in the data set, and without
changing the meaning of some of the other dimensions. For example, in its output, GTCP
keeps track of the toroidal slice that produces the data of interest by using a dimension that
spans the “Toroidal rank” of grid points. In our workflow, we wish to create histograms
encompassing all grid points in the toroid, thereby eliminating the concept of “Toroidal
rank” and instead growing the dimension that spans the number of grid points.

Programming languages represent multi-dimensional arrays in a specific order in mem-
ory, so we cannot simply keep the data ordered as it is, change the number of dimensions
and their sizes, and assume that the new dimensions correctly reference the data. In fact,
here we demonstrate that even though Dim-Reduce does not modify the size of the data,
it potentially requires a rearrangement of the data in memory, so that the data is correctly
represented by the new dimensions. We also show that a simple calculation can be used to
obtain new indices in the dimension that grows.

4.3.1. Dim-Reduce: Description. Because the motivation for this operation is
based on how people understand data, rather than how it is represented internally, it is best
explained through an example. Say that we have a solid divided into 6 sections. In each
section, there are 3 particles for each of 4 charge types and 2 colors. We have a 4-dimensional
array holding the speeds of all particles, for each value of these attributes (section, particle
number, charge type, color). The dimensions of the array are N0 ×N1 ×N2 ×N3, where:

• N0 = 6 is the size of the section dimension D0

• N1 = 3 is the size of the particle number dimension D1

• N2 = 4 is the size of the charge type dimension D2

• N3 = 2 is the size of the color dimension D3.
Now, say that for the purpose of performing some type of analysis on the dataset, we

wish to eliminate the concept of color of a particle and compensate by changing the concept
of particle number, so that D1 spans all particles in a particular section and of a particular
charge type, regardless of color. We still wish, however, to keep track of the original section
where the particle is located and of its original charge type. The desired result of this
operation is that:

• The concept of color of a particle disappears.
• The concept of particle number loses its original meaning and takes on a new one.

Its dimension now spans all particles in a particular section and of a particular
charge type, regardless of color.

• The concepts of section and charge keep their original meanings, and the sizes of
their dimensions are unchanged.

We can say that D1, the particle number dimension, absorbs D3, the color dimension.
The array resulting from this operation has dimensions N ′0 ×N ′1 ×N ′2, where:

• N ′0 = 6 is the size of the section dimension D′0
• N ′1 = N1 ×N3 = 6 is the new size of the particle number dimension D′1
• N ′2 = 4 is the size of the charge dimension D′2.

258 Generic Workflow Components

We call this operation dimension reduction. Even though it does not change the size of
the data set, we can show that it potentially changes the ordering of data in memory.

4.3.2. Dim-Reduce: Re-Ordering of Data. In the original array, say we are inter-
ested in the speeds of the particles in section number 3, and having charge type 1. This
corresponds to all of the particles with indices (3, p, 1, c), where p is any particle number
and c is any charge type. Assuming row-major order, the one-dimensional indices of these
quantities of interest are:

• 1-D indices of (3, p, 1, c): 74, 75, 82, 83, 90, 91.
After the dim-reduce operation described above, even though the concepts of particle

number and color have changed, we would like the indices in the dimensions D′0 and D′2 to
keep their original meanings. The operation leaves us with a 6 × 6 × 4 array, in which the
1-D indices of the quantities of interest, that is, the speeds of the particles of charge type 1
in section number 3, are:

• 1-D indices of (3, p′, 1): 73, 77, 81, 85, 89, 93.
In this case, we see that the one-dimensional indices of the same values before and after

the dim-reduce operation all differ. Therefore, in order to satisfy the desired qualities of
the dim-reduce operation, we potentially have to re-order the data in its one-dimensional
representation.

4.3.3. Dim-Reduce: Calculation. Using the same example, say (s, p, ch, cl) are the
indices of a value in the original array, and (s′, p′, ch′) are the indices of the same value in
the new array (after the dim-reduce operation).

Because the new dimension D′1 holds new meaning for the particles, we have some
freedom in what its indices represent, as long as they range from 0 to N1×N3 in increments
of 1.

If we define the dim-reduce operation as:
• s′ = s
• p′ = p+ (cl ×N1)
• ch′ = ch,

then the above requirements are met. This is simple to generalize to any number of dimen-
sions.

4.3.4. Dim-Reduce: Conclusions.
• One dimension is eliminated, another dimension takes on a new meaning, and all

other dimensions keep their original meanings.
• This is useful in scientific workflows.
• It potentially requires a re-ordering of data in its 1-D representation.
• We can use a simple arithmetic operation to create new indices in the dimension

that grows.

4.4. End Components. In its current implementation, Histogram outputs its data
to a file on disk. This design decision was made because histograms are often end-results
in workflows and because they are small. A more flexible design would be to let Histogram
output its data in the same way as Select, Magnitude, and Dim-Reduce. Indeed, if we give
all data manipulation and analysis components the possibility of sending their output to
downstream components, we do not have to designate some of these analysis tools to be
workflow endpoints. Instead, designing a specific End Component whose sole purpose it to
write to disk would provide greater flexibility in the arrangement of the other components.

5. Conclusions and Future Work. There exists today a wide variety of scientific
workflows in the HPC space. These complex scientific codes often make use of the same

A. Champsaur and G. Lofstead 259

types of analytical procedures, but they are too often designed from scratch for each appli-
cation that they work with. This leads to tighlty coupled workflows, which are difficult to
maintain and modify. Instead, building workflows from existing components is easier and
more flexible. Stream-based, generic workflow components should be designed so as to allow
for the greatest variety in their arrangement and for a maximum number of downstream
subscribers. Designing components with the ability to handle data having any number of
dimensions provides a very useful way to link them together. Maintaining a high level of se-
mantics upstream, for example by labeling dimensions and certain quantities inside of these
dimensions, gives a good understanding of the data to downstream components. There is a
need for components that organize the data in a format that downstream components can
understand. And, designing specific disk writer components removes the need to temporarily
modify analytics components to let them also act as disk writers.

There are a number of improvements we can make to our current implementation to
have at our disposal more robust and flexible workflow components. As mentioned earlier,
reading and writing dimension labels at each step in the workflow provides more information
to downstream components and presents a clear advantage. The ADIOS interface includes
the ability to send output to multiple destinations, by having several “write groups.” We
wish to explore the possibility of a Fork Component that would use this functionality of
ADIOS to allow the creation of branched workflows.

The components we have developed in this research cover only a small portion of the
procedures that computational scientists need in the development of their workflows. Even-
tually, we wish to allow for the development of a large collection of generic workflow com-
ponents. We can take steps in this direction by building on our existing components. For
example, Magnitude performs a relatively simple operation on multi-dimensional data, where
one dimension spans a number of quantities involved in each instance of the operation. This
model can fit any number of operations involving a repeating, fixed number of quantities,
and it can even be made to work with a formula specified by the user at runtime. This
opens the door to a large family of generic components.

Finally, while we have kept performance in mind in the development of these compo-
nents, performance optimization is not yet the focus of this research. In the design of any
generic tool however, the question of performance inevitably arises. Indeed, designing tools
that are not meant to operate on a specific format of input data can easily impact per-
formance. For example, Dim-Reduce performs the same amount of computation whether
it re-arranges data or not. In the long run, optimizing these components will involve de-
tecting such situations where they can avoid performing unnecessary iterations and data
manipulation.

A. Initial Workflow Scaling Tests. To obtain a preliminary idea of the scaling
potential of the workflows, we ran three configurations of the LAMMPS workflow and two
configurations of the GTCP workflow on a 96-core testbed cluster at Georgia Tech. We
tried to keep the data size per processor (both for simulation processors and component
processors) roughly the same through all configurations in each workflow, and measured the
time between the point at which the first component (Select) attached to the simulation’s
output stream and the point at which the last component (Histogram) finished writing
its output. The numbers of processes used for the various components were chosen based
mainly on the sizes of the data that they handled.

260 Generic Workflow Components

Particles Total
Procs

LAMMPS
Procs

Select
Procs

Magnit.
Procs

Histo.
Procs

Time
(s)

846,301 48 23 10 10 5 56.51
1,281,601 72 35 15 15 7 41.96
1,713,101 96 46 20 20 10 64.30

Table A.1: LAMMPS Worflow Scaling

To exhibit ideal weak scaling, all of the above times would be equal. Below are the
results for the GTCP workflow.

Grid
Points

Total
Procs

GTCP
Procs

Select
Procs

Dim-
Reduce
(1+2)
Procs

Histo.
Procs

Time
(s)

1,027,570 22 10 6 4 2 36.74
4,103,134 96 44 25 18 9 76.93

Table A.2: GTCP Worflow Scaling

REFERENCES

[1] Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov/computing-resources/
rhea/, 2015. [Online; accessed 15-July-2015].

[2] S. Ethier, W. Tang, and Z. Lin, Gyrokinetic particle-in-cell simulations of plasma microturbulence on
advanced computing platforms, in Journal of Physics: Conference Series, vol. 16, IOP Publishing,
2005, p. 1.

[3] S. Lakshminarasimhan, N. Shah, S. Ethier, S.-H. Ku, C.-S. Chang, S. Klasky, R. Latham,
R. Ross, and N. F. Samatova, Isabela for effective in situ compression of scientific data, Concur-
rency and Computation: Practice and Experience, 25 (2013), pp. 524–540.

[4] J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel, B. Gal-
lagher, and M. Zingale, Parallel netcdf: A high-performance scientific I/O interface, in Super-
computing, 2003 ACM/IEEE Conference, IEEE, 2003, pp. 39–39.

[5] Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi, S. Klasky, R. Tchoua, J. Lof-
stead, R. Oldfield, et al., Hello ADIOS: the challenges and lessons of developing leadership class
I/O frameworks, Concurrency and Computation: Practice and Experience, 26 (2014), pp. 1453–
1473.

[6] T. Peterka, Decaf Project Repository. https://bitbucket.org/tpeterka1/decaf, 2015. [Online;
accessed 1-July-2015].

[7] S. Plimpton, R. Pollock, and M. Stevens, Particle-mesh Ewald and rRESPA for parallel molecular
dynamics simulations., in PPSC, Citeseer, 1997.

[8] R. Thakur, W. Gropp, and E. Lusk, On implementing MPI-IO portably and with high performance,
in Proceedings of the sixth workshop on I/O in parallel and distributed systems, ACM, 1999,
pp. 23–32.

[9] F. Zheng, H. Yu, C. Hantas, M. Wolf, G. Eisenhauer, K. Schwan, H. Abbasi, and S. Klasky,
Goldrush: Resource efficient in situ scientific data analytics using fine-grained interference aware
execution, in Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, ACM, 2013, p. 78.

https://www.olcf.ornl.gov/computing-resources/rhea/
https://www.olcf.ornl.gov/computing-resources/rhea/
https://bitbucket.org/tpeterka1/decaf

CCR Summer Proceedings 2015 261

HYPERGRAPH PARTITIONING WITH LOCAL REFINEMENT FOR
IMPROVING THE PERFORMANCE OF FINITE ELEMENT METHODS

ON DISTRIBUTED UNSTRUCTURED MESHES

GERRETT F. DIAMOND∗ AND KAREN D. DEVINE†

Abstract. We consider partitioning algorithms to be used on unstructured meshes to improve metrics
that are important measurements of the performance of finite element methods. These metrics include
entity imbalance, the number of copied boundary entities, and total number of ghost elements across all
part. Reducing these metrics and balancing them across the processors affect computational time and
communication time as well as memory requirements per part. We propose the use of hypergraph partitioning
followed by local refinement by diffusive load balancing to improve these metrics and the corresponding finite
element methods’ performance.

1. Introduction. Unstructured mesh partitioning and load balancing has been re-
searched in great detail. Between diffusive methods [12, 18, 26, 30, 31], graph and hyper-
graph methods [4, 5, 6, 7, 8, 13, 15, 16, 19, 20, 21, 29], and multilevel schemes [3, 16, 19],
the problem of equally distributing the mesh elements across processes has many algorithms
to achieve near-optimal balance. However, many distributed applications that are run on
meshes have overheads that are not directly affected by the element load imbalance. These
applications require algorithms and schemes that balance other metrics as well as the ele-
ment imbalance to get optimal performance and scalability. These constraints on runtimes
and memory can lead to applications being impractical or impossible to run at large scales.
These applications require new and more aware algorithms that partition especially for the
specific metrics and needs of the application.

In this paper we describe two applications that require balancing beyond elements in
Section 2. Section 3 lists previous work and some tools that are used and built on for this
work. In Section 4 we detail the implementation of the work. Section 5 and 6 detail the
experiment design and results of the proposed methods. Section 7 talks about future work
and Section 8 concludes our study.

2. Motivation. The performance of several finite element methods (FEMs) is propor-
tional to the imbalance of mesh entities as well as the number of copies that exist due to the
partitioning of the mesh. In some methods, ghost entities are also a concern with respect
to performance and memory. To optimally balance for these FEMs, partitioners are needed
that include knowledge of copies and ghosts as well as entity counts. Here we describe two
FEMs, one that depends on the total number of vertices, PHASTA, and one that includes
layers of ghost elements on each part, MPAS-Ocean.

2.1. PHASTA. PHASTA [10, 23] is a massively parallel finite element flow solver.
The computational load of PHASTA depends on the number of elements on each part in
the equation formulation stage; the system solution stage depends on the total number
of vertices. PHASTA uses element-based meshes which means each element is uniquely
assigned to a part, but the vertices are copied when they are shared across more than one
part. Thus the system solution stage and communication for it grows based on the number
of shared vertices.

2.2. MPAS-Ocean. The Model for Prediction Across Scales (MPAS) is a modeling
framework used for earth-system simulations. The MPAS framework is built on top of
unstructured Voronoi meshes at large scales with regions of higher resolution. We specifically

∗Sandia National Laboratories and Rensselaer Polytechnic Institute, diamog@rpi.edu
†Sandia National Laboratories, kddevin@sandia.gov

262 Hypergraph and Local Refinement for FEMs

target the ocean modeling framework, MPAS-Ocean [24]. The MPAS-Ocean meshes consist
of mostly regular hexagonal elements and require several layers of ghost elements per part
for use in simulations. The total workload per part is proportional to the number of owned
elements plus the number of ghosted elements. For large scale simulations on these meshes
large ghost counts and imbalance of the ghosts across the parts can be a bottleneck in terms
of communication costs and memory constraints as well as have an uneven workload. Sarje
et al. [25] provide an example image of the workload imbalance by part in one MPAS-Ocean
mesh seen in Figure 2.1. The coloring is done by process. Red processes correspond to more
workload on that part and blue parts are less. Sarje et al. report that in this example the
process with the highest workload has about three times as much work as the lowest process.

Fig. 2.1: Per-part visualization from [25] of the workload in an execution of MPAS-Ocean
using a non-ghost-aware graph partitioning. Red parts have high work load and blue parts
have low load.

Sarje et al. [25] use a ghost-aware hypergraph model to partition for the MPAS-Ocean
problem. In their model they construct the k distant ghost adjacencies by computing the
kth power of a matrix that represents the graph of the second adjacencies in the mesh.
Then they iteratively partition using the hypergraph by assigning weights based on a cost
predictive model of the computation and communication costs that depends on ghost cells.
Sarje et al. also include ocean depth information per cell as the cell weights. In the paper,
they show that the iterative hypergraph approach reduces the overall application time by
up to 50% and also increases the scalability of the application.

3. Related Work.

3.1. Zoltan/Zoltan2. The Zoltan toolkit [2] provides abstract interfaces to a broad
range of parallel algorithms that work on problems such as partitioning, ordering, and
coloring. Zoltan uses callback functions to allow users to provide information on the data
structures to be operated on by Zoltan’s algorithms.

A new package, Zoltan2 [1], is in development as part of Trilinos [17] that uses C++
features to provide the functionality of Zoltan as well as expand the capabilities with more
algorithms and interfaces. Zoltan2 also offers a more usable interface and the ability to
construct adapters rather than callbacks to provide general information to the parallel par-
titioners, ordering methods and coloring algorithms.

3.2. PUMI and ParMA. The original goal of this work was to create an interface
to SCOREC’s Parallel Unstructured Mesh Infrastructure (PUMI) and Partitioning using
Mesh Adjacencies (ParMA) [28] for use in Zoltan2. PUMI’s main components are a parallel
communication control, PCU, a geometric model interface, GMI, and a mesh interface, APF.

G.F. Diamond and K.D. Devine 263

These packages are the basic framework behind ParMA and are necessary to use ParMA.
ParMA is a collection of algorithms that use mesh adjacencies to perform diffusive load
balancing directly on the mesh [28]. This is done iteratively, improving the target metric in
each iteration. The main goal of ParMA is to balance the overall workload by diffusing high
per-part workloads to neighboring parts and getting a better value of the target criteria.
ParMA uses the complete mesh representation provided from PUMI and operates directly
on the mesh instead of constructing a graph/hypergraph on top of the mesh.

3.3. Hypergraph Models. One way to solve the mesh entity copy problem is to build
a hypergraph representing the mesh and partition with respect to hypergraph edge cut meth-
ods. Chevalier et al. [9] and Fortmeier et al. [14] describe the a hypergraph construction
where each mesh element is treated as a vertex of the hypergraph and hyperedges are built
on the mesh vertices. The hyperedge for a mesh vertex has a connection or pin to each
element adjacent to the mesh vertex. Figure 3.1 shows an example hypergraph constructed
on a small triangular mesh. The mesh is outlined in gray, the hypergraph vertices are in
blue on each of the mesh elements and the yellow squares are the hyperedges on each mesh
vertex. The pins of the hypergraph are presented as black lines. Fortmeier et al. describe
in detail how this hypergraph construction models the communication by the hyperedge
cuts as each hyperedge that is cut into more than one part represents a mesh vertex that is
copied. A hyperedge that is cut multiple times creates multiple copies for that mesh vertex.
Therefore Fortmeier’s construction exactly models the communication problem that exists
in the mesh entity copies problem.

Fig. 3.1: A construction of the hypergraph on top of a mesh. The gray lines detail the
triangular mesh, the blue circles are the hypergraph vertices and the yellow squares are the
hyperedges. The black lines show the connectivity of the hypergraph.

Devine et al. [13] and Çatalyürek et al. [7] describe an implementation of the hypergraph
construction with an exact model of communication. Their work is given in terms of matrices
but is also applicable to unstructured meshes. Their parallel hypergraph partitioner, PHG,
is available through the Zoltan toolkit and is the hypergraph partitioner that this work uses.

4. Implementation. Our proposed methods were implemented within Zoltan2. For
this work, three new structures were added to Zoltan2: an algorithm, an adapter, and
a model. The algorithm provides the interface from Zoltan2 to ParMA’s load balancing
algorithms. The adapter sets up use of Zoltan2 for the SCOREC mesh interface, APF. The
new model is for hypergraphs to be built from a Zoltan2 adapter.

264 Hypergraph and Local Refinement for FEMs

To use any of the SCOREC packages and code within Zoltan2, one must first pull in the
SCOREC repository. This can be done by running the command: “git clone https://github.com/SCOREC/core.git
SCOREC”. It is important to run this command in the root of the Trilinos repository and
the directory must be named SCOREC. Then to enable SCOREC one must add the Trili-
nos ENABLE SCOREC:BOOL=ON flag to the cmake configuration. It is also possible to
enable specific portions of SCOREC; for example, Trilinos ENABLE SCORECpcu:BOOL=ON
enables the communication package of SCOREC. The full list of packages are gmi, pcu, apf,
mds, parma, apf zoltan, ma, and apf stk which can be individually enabled like the previous
example by prepending the package name with SCOREC. The SCOREC enable flag will
enable all of the SCOREC packages.

4.1. The ParMA Algorithm. The first step in our work was to develop an interface
to ParMA such that users of Zoltan2 can use the diffusive load balancing algorithms that
exist there. The algorithm expects a MeshAdapter that includes either region or face data
and adjacency to vertices. With this information, the algorithm constructs an APF mesh.
Then, one of the balancing algorithms in ParMA is run on the APF mesh. The Zoltan2
Partitioning Solution is built from the new assignments that ParMA has assigned.

To build the APF mesh as an intermediate mesh representation, the mesh adapter must
provide information about mesh vertices and mesh elements (either two dimensional or three
dimensional). To fully construct the mesh, the adapter must provide first adjacencies from
the elements to vertices. Also the elements need to have topological information defined as
Zoltan2::EntityTopologyTypes. APF only supports the TRIANGLE, QUADRILATERAL,
TETRAHEDRON, HEXAHEDRON, PRISM, and PYRAMID topologies. Coordinates on
the vertices are also required for use in ParMA’s centroid balancer.

There are seven ParMA balancers available through the Zoltan2 interface. The first two
are a vertex balancer and an element balancer which attempt to decrease the imbalance of
vertices and elements respectively through local diffusive migration of elements. The third
and fourth balancers, vertex/element and vertex/edge/element, balance the listed entity
types in order from left to right such that as the list is traversed and a given type is being
balanced, the balance of preceding types is preserved. The fifth balancer is a centroid diffuser
that balances elements but the elements that are migrated across parts are chosen based on
distance from the part centroids. This balancer make more rounded parts while balancing
the elements. The last two are specialized balancers, one that incorporates ghosts and one
that targets part shape. The ghost balancer counts the number of ghosts each part has
off each boundary that are within a certain number of layers and balances the number of
ghosts plus the number of owned entities. The shape balancer unlike the other balancers
may increase the imbalance in order to balance the part boundary length. The target of
the shape balancer is to iteratively increase the size of short part boundaries to get a better
average across the parts. Each balancer has a tune-able imbalance tolerance. For the first six
balancers, the tolerance defines the target imbalance that ParMA will try to reach. These
balancers will exit when either the tolerance is reached or a local minimum is detected that
could not be improved over several steps. For the shape balancer the imbalance tolerance is
the maximum allowable imbalance in the number of elements. Once over this tolerance, the
shape balancer will terminate. The shape balancer will also terminate when the minimum
part boundary length is greater than 70 percent of the average part boundary length.

The ParMA algorithms are accessible through a Zoltan2 Partitioning Problem by setting
the parameter algorithm to parma. The user can choose which ParMA balancer to use by
setting the parma method parameter of a parameter sublist named parma parameters. The
seven ParMA balancers are accessed by the values Vertex, Element, VtxElm, VtxEdgeElm,
Centroid, Ghost, and Shape. The default method is the vertex/element balancer. The

G.F. Diamond and K.D. Devine 265

imbalance tolerance is set by the imbalance tolerance parameter. The user can also set the
degree of weight that will be sent on each iteration of ParMA by setting the parameter
step size of the parma parameters sublist. A lower value makes ParMA send less weight
per iteration; the default is 0.5. For the ghost balancer the depth of the ghosting and
the through entity can be set using the ghost layers and ghost bridge parameters of the
sublist. The number of layers defaults to 3. The bridge is the dimension of the entity (0 for
vertex, 1 for edge, etc.) that defines second adjacencies in the mesh; it defaults to (element
dimension-1).

4.2. APF Mesh Adapter. To follow up on the interface from Zoltan2 to ParMA, we
wanted to lay the framework for SCOREC to use the various mesh partitioners of Zoltan2.
For this idea, we implemented an APF Mesh Adapter that would convert the APF mesh
database into the format used throughout Zoltan2. There are two key portions of the APF
Mesh Adapter: the construction, and application of the partitioning solution.

The construction of the APF Mesh Adapter requires five sets of values to be defined. For
the APF mesh we define all five sets on each dimension of the mesh to provide a complete
description of the mesh. The first set defined is the ID numbers, both local and global. This
was defined on the APF mesh using the Numbering and GlobalNumbering structures that
assign unique numbers to each entity. The second set is the topologies of the entities. This
requires a conversion from the apf::Mesh::Type to the Zoltan2::EntityTopologyType. The
third set is the coordinates. For the vertices these are defined by the point location. For
the other entities the coordinate information is computed by calculating the linear centroid
of the entity. All coordinates of an APF mesh are always given in three dimensions. The
fourth and final sets are the first and second adjacency information which are computed at
the same time. First adjacencies are gathered locally per part using the apf::getAdjacency
to get adjacencies from each dimension to every other dimension. Second adjacency is
computed globally in a series of steps. The first step uses apf::getAdjacency on each of the
first adjacent entities back to the original dimension. This gets all local second adjacency.
To get global second adjacencies, a communication phase is used to share the data across
copies. For non-element entities the communication is across all parts that the entity has
residence on. For elements each element sends its own ID across any first adjacent entity to
the resident parts of that adjacent entity. The receiving parts then add element IDs to the
elements next to the copied adjacency.

The applyPartitionSolution function, which migrates mesh data to a new partition, is
defined in two ways. The first is for elements. In this case the partitioning solution provides
new locations for each element. Thus each element is migrated to its new destination and
lower dimension entities are migrated and copied as needed. For a non-element entity
partitioning, we have to convert the partitioning solution’s part IDs to a partition of the
elements. To do this we traverse each element and look at its downward adjacency to the
primary entity. The element is assigned to the part receiving the highest number of its
downward adjacent entities.

We also implemented two ways to assign weights to the mesh entities using a setWeights
function. The first is a Zoltan2 style where the user provides an array and stride along with
the mesh entity type so that entity ei is assigned weight array[i*stride]. The second method
is a more native way for users of APF. In this method the user defines an apf::MeshTag
and assigns a weight to each entity of the dimension. The user then provides the apf::Mesh
and apf::MeshTag along with the mesh entity type to the setWeights function. Any entity
in that dimension that was not given a value is assumed to have a weight of one. We also
assume that the each value in the tag is a weight so the size of the tag is the number of
weights assigned to the entity. One can also assign multiple weights by calling the function

266 Hypergraph and Local Refinement for FEMs

several times with different tags or with the array and stride method.
In early testing, we found that reading the entire apf::Mesh and storing each dimension

was a large memory concern. To alleviate this memory constraint we took two approaches.
The first is to not always compute the second adjacencies. This is both a runtime and
memory concern as it requires a communication step as well as the storage for all second
adjacencies. To make the mesh adapter compute second adjacencies a boolean flag is passed
to the constructor. Our second approach is to not build every dimension of the mesh. In most
cases Zoltan2 only needs the primary and adjacency types for the partitioning algorithms.
So the constructor defaults to only storing information on these two types which are passed
in to the constructor. To allow the user to build other types there is an optional integer
argument that defines which dimensions to build other than the primary and secondary
types. This integer should range from 0 to 2d+1, where d is the dimension of the mesh. The
integer represents a series of binary flags where the dth bit corresponds to whether or not
the adapter will store the entities of dimension d. For example, passing in 9 = 10012 will
store the regions and vertices which are required by the Zoltan2 ParMA algorithm.

4.3. The New Zoltan2 Hypergraph Model. To run the hypergraph partitioners
of Zoltan on the APF mesh we developed a hypergraph model as well as callbacks that work
on the model to supply Zoltan with the data needed. This data includes the descriptions
of hypergraph vertices, hyperedges, and pins. Two hypergraph model constructions were
implemented on meshes for use in this work.

The first is the traditional hypergraph model used in hypergraph partitioning on meshes
described by Fortmeier et al. [14]. In this model, mesh elements are represented by hy-
pergraph vertices and the mesh vertices are the hyperedges. Then a pin goes from each
hyperedge to any hypergraph vertex that represents a first adjacency from the mesh vertex
to mesh element. Cutting a hyperedge is equivalent to making a copy of the corresponding
mesh vertex. Therefore reducing the edge cut should decrease the number of copies and
decrease the cost of communication in the finite element method. Thus the hypergraph
partitioning targets reducing the imbalance of the elements as well as reduce the number of
vertices copied. For our implementation of the hypergraph model we define the hypergraph
vertices on the primary entities and hyperedges on the adjacency entities. This allows the
above construction as well as any combination of entity dimensions to also create a valid
hypergraph.

The second construction was one to target the number of ghost entities per part. In
this model we represented the hypergraph vertices and hyperedges as the primary entities
in the mesh. Pins were then added for any primary entity that was within k layers of second
adjacent entities where k is just the number of ghost layers to count. These pins are added
for on process and off process adjacencies. Rather than compute the pins via a BFS or DFS
starting at each hypervertex, Sarje et al. [25] suggest a method using the adjacency matrix
based on the graph model of the mesh. In this construction an adjacency matrix is built from
the second adjacencies of the mesh between primary entities through the second adjacency
type. This matrix defines the first layer of ghosts in the mesh. Subsequent layers of ghosts
can be found by the k-th power of the adjacency matrix. All k layers of ghosting can be found
by aggregating each power of the adjacency matrix. The size of the hyperedges in this model
represent the total number of ghosts needed for each entity. Cutting a hyperedge results
in more communication and copying of entities for the finite element method. Therefore
the hypergraph partitioning will target decreasing the imbalance as well as the number of
ghosts per part.

5. Experiments. All experiments were run on Red Sky, a capacity cluster at Sandia
National Laboratories. Each node in Red Sky consists of a 2.93 GHz dual socket/quad

G.F. Diamond and K.D. Devine 267

core Nehalem X5570 processor. Our experiments presented in this paper are run with up
to 512 processes. For the PHASTA problem, we partition on two meshes: an abdominal
aorta aneurysm (AAA) mesh [32] and a mesh of a tunnel with a bump midway through
(deleryBump) [11]. Figure 5.1 shows the geometry of the two meshes. On the left is the
AAA mesh and the right is the deleryBump. The AAA mesh has 2.1 million elements and
the deleryBump contains 8.3 million. For comparison we perform runs on both meshes
using the implemented hypergraph partitioner as well as Scotch graph partitioning [22]. For
further analysis we run ParMA diffusive load balancing on both partitions using the VtxElm
balancer.

Fig. 5.1: (Left)An abdominal aorta aneurysm mesh [32]. (Right) a tunnel with a bump
midway through. Bottom shows a 16-way partition of the mesh around the refined region.

For the MPAS-Ocean problem we use two ocean meshes of different resolution. The first
has a resolution of 15km in the North Atlantic and 75km elsewhere. The other mesh has a
uniform resolution of 15km across the mesh. Since the original mesh is mostly hexagonal
and the APF interface does not support this type, we construct a triangular mesh where
each vertex in the new mesh represents an element from the original. Figure 5.2 shows a
small example of the hexagonal mesh and the mesh constructed for use by APF in red.

Fig. 5.2: The original hexagonal mesh and the corresponding APF mesh (in red)

The resulting North Atlantic mesh has 500 thousand elements and the 15km mesh has
3.7 million elements. We run our new ghost-aware hypergraph model where faces are the
primary entity and edges are the adjacency entity type on these newly constructed meshes.
For comparison we run similar constructions using a non ghost-aware hypergraph and Scotch
graph partitioning. We count the hypergraph’s off process ghosting which counts ghosts by

268 Hypergraph and Local Refinement for FEMs

vertex, the part’s ghosting which is the number of unique ghosts off a processes boundary,
and the sum of a part’s ghosts plus the owned. The meshes are partitioned using 16 to
128 processes on the North Atlantic mesh and 32 to 128 on the 15km mesh. We ran the
experiments with three layers of ghosts.

6. Results. Figure 6.1 shows the results for the AAA mesh. The per-part maximum
imbalance target for these runs is 1.05. It is known [32] and seen in these results that graph
and hypergraph partitioning tend to have high imbalance on the vertices when partitioning
elements. For this imbalance we use ParMA to lower the vertex imbalance with minor
impact to the element imbalance. For the total number of vertices, the other metric for
PHASTA, we see hypergraph partitioning gets much lower amounts than Scotch. Also
running ParMA does not have a major impact on the number of vertices and for Scotch
it decreases the number of vertices. The additional time required to refine partitions with
ParMA is small for both hypergraph and Scotch partitions.

The results from running on the deleryBump mesh are in Figure 6.2. In this case, we
see a larger imbalance of the vertices due to graph/hypergraph partitioning. Once again
ParMA is able to lower this imbalance down to the target imbalance, 1.2. However, there
is up to an 11% increase in the element imbalance after running ParMA on the hypergraph
partition. Just as in the AAA partitions, hypergraph partitioning has significantly less
vertices, but this time when we run ParMA there is a much more significant increase in the
number of vertices. In the 512 part run, running ParMA on the hypergraph partition results
in a higher number of vertices than running ParMA on the graph partition. We attribute
this more significant increase in vertices to the increased vertex imbalance that ParMA is
trying to reduce. ParMA partitioning time is greater for this mesh than for the AAA mesh;
for this mesh and scale, ParMA takes 50% to 90% of the total partitioning time for Scotch
partitioning with ParMA.

Due to its richer model, hypergraph partitioning is usually more expensive than graph
partitioning. For these experiments, however, the hypergraph partitioning proved to be
acceptably competitive. Our initial experiments showed that hypergraph partitioning was
taking up to 60 times longer than Scotch. We identified a bottleneck in the implementation
of the Hypergraph Model constructor that led to this unreasonable overhead. When primary
entities may be copied on many processes, the Hypergraph Model includes an extra step
that defines a unique “owner” or responsible process for each primary entity. The initial
implementation of this step relied on many global Allreduce operations (one per primary
entity). An improved implementation uses Tpetra’s Map objects and createOneToOneMap
function to more efficiently define owners for copied entities. Moreover, for all experiments
in this paper, the primary entity type (element) is not copied in the APF mesh. We added
a MeshAdapter method allowing users to specify which entities are not copied in their data,
thus allowing us to skip this step when it isn’t needed, drastically reducing the construction
time for the Hypergraph Model. As a result, for the AAA mesh on 256 processes, Scotch
partitioning took 16.1 seconds, while hypergraph partitioning took 20.4 seconds (1.3 times
longer). For the deleryBump mesh on 512 processes, Scotch took 46 seconds; hypergraph
partitioning took 103 seconds (2.2 times longer). In both cases, the performance of the
hypergraph partitioner is sufficient to be used as an alternative to graph partitioning.

Figure 6.3 and Figure 6.4 compare the three partitioning approaches we used on the
North Atlantic mesh and 15km mesh, respectively. In both meshes we see that traditional
hypergraph partitioning does not work well in terms of ghost counts. In all of the runs
there is a significantly greater number of ghosts compared to both the graph partitions and
the ghost-aware hypergraph partitions. Between graph partitioning and the ghost-aware
partitioning we see in all but one of the runs the ghost-aware has slightly fewer ghosts. The

G.F. Diamond and K.D. Devine 269

reduction in ghosts using ghost-aware partitioning ranges from 0.1% to 5% compared with
Scotch partitioning. In regards to timing, we see the ghost-aware hypergraph partitioning
is fairly competitive with the unique-owner optimizations turned on. In the North Atlantic
mesh, we see that both hypergraph models scale better than the graph partitioner; at 128
processes, the hypergraph and ghost-aware partitioners run faster than the graph partitioner.
We see in all three algorithms that the imbalance of ghosts is quite high, between 1.4 and 2.1.
The graph partitioning tends to have lower imbalance in the ghosts. This imbalance may
lead to inefficiency in the application due to imbalanced communication costs. On the other
hand we see that the ghost plus owned element imbalances are right around their target. For
the two hypergraph models they target an imbalance of 1.1 which the ghost-aware model
is at or below and the regular hypergraph fluctuates around. The graph partitions try to
reach a lower imbalance when possible so we see a much lower imbalance in those cases.

270 Hypergraph and Local Refinement for FEMs

Fig. 6.1: The results from partitioning the AAA mesh. (Top) The vertex imbalance after
partitioning. (Top Middle) The element imbalance after partitioning. (Bottom Middle) The
total number of vertices in the mesh. (Bottom) The time in seconds for ParMA partitioning
applied to hypergraph and Scotch partitions.

G.F. Diamond and K.D. Devine 271

Fig. 6.2: The results from partitioning the deleryBump mesh. (Top) The vertex imbalance
after partitioning. (Top Middle) The element imbalance after partitioning. (Bottom Mid-
dle) The total number of vertices in the mesh. (Bottom) The time in seconds for ParMA
partitioning applied to hypergraph and Scotch partitions.

272 Hypergraph and Local Refinement for FEMs

Fig. 6.3: Statistics from partitioning the North Atlantic Ocean mesh using 16, 32, 64, and
128 processes. (Top) The sum of the number of ghost elements per part. (Top Middle) The
partitioning time. (Bottom Middle) The imbalance of ghosts elements from each partition.
(Bottom) The imbalance of ghost+owned elements.

G.F. Diamond and K.D. Devine 273

Fig. 6.4: Statistics from partitioning the 15km Ocean mesh using 32, 64, and 128 processes.
(Top) The sum of the number of ghost elements per part. (Top Middle) The partitioning
time. (Bottom Middle) The imbalance of ghosts elements from each partition. (Bottom)
The imbalance of ghost+owned elements.

274 Hypergraph and Local Refinement for FEMs

7. Future Work. With the new ParMA interface in Zoltan2, we would like to run
some experiments with PULP [27] and ParMA to see how they compare. Also we would
like to compare our hypergraph model of ghosting with the algorithm provided in [25]. This
comparison would require the ocean depth information as weights to accurately compare
the two algorithms.

We found that our ghost-aware results are promising and seem to agree with those in
[25]. In their paper they found much better results in the ghost-aware model when the core
counts scaled out to the thousands. Thus we need to see if our ghost-aware hypergraph
model will follow the same pattern and see more significant improvements at larger core
counts. Also further work should go into looking at the imbalance of the ghosts. We would
like to test the ParMA ghost balancer to see if we can reduce the ghost imbalance without
significantly increasing the number of ghosts.

8. Conclusions. In this work, we addressed two mesh-based applications whose per-
formance depends on factors other than the element imbalance. We discussed partitioning
algorithms that can target the different performance factors and demonstrated the use of
graph and hypergraph partitioning on the two target problems. We also showed the use
of ParMA as a local refinement tool to improve the resulting imbalance as a result of the
partitioning.

For the PHASTA application we found that hypergraph partitioning can reduce the
total number of vertices compared to graph partitioning by up to 4%. Also using ParMA,
we can reduce the high vertex imbalance that is found in graph and hypergraph partitions
with the trade-off of some increase in the total number of vertices in the mesh.

We developed a new ghost-aware hypergraph model to partition meshes for applications
like the MPAS-Ocean which use two or more layers of ghost. We found this new model to
have small improvements in the number of ghosts over the traditional graph approach but
also tended to have a larger imbalance of the ghosts across the different processes. We
predict that our ghost-aware model will perform better at larger scales, but require more
testing to back up this hypothesis.

Acknowledgment. The authors thank Brent Perschbacher, Cameron Smith, Dan
Ibanez, Andrew Bradley, and Andrew Salinger for helping the process of integrating SCOREC
within Trilinos. Also we thank Erik Boman, Vitus Leung, Siva Rajamanickam, and Michael
Wolf for their assistance in the Zoltan2 development.

REFERENCES

[1] Zoltan2 Home Page, 2015. https://trilinos.org/packages/zoltan2/.
[2] E. G. Boman, Ü. V. Çatalyürek, C. Chevalier, and K. D. Devine, The Zoltan and Isorropia

parallel toolkits for combinatorial scientific computing: Partitioning, ordering, and coloring, Sci.
Program., 20 (2012), pp. 129–150.

[3] T. Bui and C. Jones, A heuristic for reducing fill in sparse matrix factorization, in Proc. 6th SIAM
Conf. Parallel Processing for Scientific Computing, SIAM, 1993, pp. 445–452.

[4] Ü. Çatalyürek and C. Aykanat, Decomposing irregularly sparse matrices for parallel matrix-vector
multiplications, Lecture Notes in Computer Science, 1117 (1996), pp. 75 – 86.

[5] , Hypergraph-partitioning-based decomposition for parallel sparse-matrix vector multiplication,
IEEE Trans. Parallel Dist. Systems, 10 (1999), pp. 673–693.

[6] , A fine-grain hypergraph model for 2D decomposition of sparse matrices, in Proc. IPDPS 8th
Int’l Workshop on Solving Irregularly Structured Problems in Parallel (Irregular 2001), April 2001.

[7] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ, R. T. Heaphy, and L. A. Riesen,
A repartitioning hypergraph model for dynamic load balancing, J. Parallel Distrib. Comput., 69
(2009), pp. 711–724.

[8] U. V. Çatalyürek, Hypergraph Models for Sparse Matrix Partitioning and Reordering, PhD thesis,
Bilkent University, Computer Engineering and Information Science, Nov 1999.

https://trilinos.org/packages/zoltan2/

G.F. Diamond and K.D. Devine 275

[9] C. Chevalier and E. G. Boman, An accurate hypergraph model for mesh partitioning, Oct. 2009.
Poster presented at the 2009 SIAM Workshop on Combinatorial Scientific Computing.

[10] K. C. Chitale, M. Rasquin, J. Martin, and K. Jensen, Finite Element Flow Simulations of the
EUROLIFT DLR-F11 High Lift Configuration, AIAA Paper 2014-0749, (2014).

[11] K. C. Chitale, O. Sahni, M. S. Shephard, and K. Jansen, Anisotropic Adaptation for Transonic
Flows with Turbulent Boundary Layers, AIAA, (2014).

[12] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, J. Parallel Distrib.
Comput., 7 (1989), pp. 279–301.

[13] K. Devine, E. Boman, R. Heaphy, R. Bisseling, and U. Catalyurek, Parallel hypergraph parti-
tioning for scientific computing, in Proc. of 20th International Parallel and Distributed Processing
Symposium (IPDPS’06), IEEE, 2006.

[14] O. Fortmeier, H. Bücker, B. F. Auer, and R. Bisseling, A new metric enabling an exact hyper-
graph model for the communication volume in distributed-memory parallel applications, Parallel
Computing, 39 (2013), pp. 319 – 335.

[15] B. Hendrickson and T. G. Kolda, Graph partitioning models for parallel computing, Parallel Com-
puting, 26 (2000), pp. 1519 – 1534.

[16] B. Hendrickson and R. Leland, A multilevel algorithm for partitioning graphs, in Proc. Supercom-
puting ’95, ACM, December 1995.

[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B.
Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist,
R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the
trilinos project, ACM Trans. Math. Softw., 31 (2005), pp. 397–423.

[18] Y. F. Hu, R. J. Blake, and D. R. Emerson, An optimal migration algorithm for dynamic load
balancing, Concurrency: Practice and Experience, 10 (1998), pp. 467 – 483.

[19] G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs,
SIAM J. Scientific Computing, 20 (1998), pp. 359–392.

[20] G. Karypis and V. Kumar, Multilevel K-way hypergraph partitioning, VLSI Design, (2000).
[21] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, John Wiley & Sons, New York,

NY, 1990.
[22] F. Pellegrini and J. Roman, Scotch: A software package for static mapping by dual recursive bi-

partitioning of process and architecture graphs, in High-Performance Computing and Networking,
Springer, 1996, pp. 493–498.

[23] M. Rasquin, C. Smith, K. Chitale, S. Seol, B. A. Matthews, J. L. Martin, O. Sahni, R. M.
Loy, M. S. Shephard, and K. E. Jansen, Scalable fully implicit finite element flow solver with
application to high-fidelity flow control simulations on a realistic wing design, Computing in
Science and Engineering, (2014).

[24] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and M. Maltrud, Ocean
Modelling, Ocean Modelling, 69 (2013), pp. 211–232.

[25] A. Sarje, S. Song, D. Jacobsen, K. Huck, J. Hollingsworth, A. Malony, S. Williams, and
L. Oliker, Parallel performance optimizations on unstructured mesh-based simulations, Proce-
dia Computer Science, 51 (2015), pp. 2016 – 2025. International Conference On Computational
Science, {ICCS} 2015Computational Science at the Gates of Nature.

[26] K. Schloegel, G. Karypis, and V. Kumar, Multilevel diffusion algorithms for repartitioning of
adaptive meshes, J. Parallel Distrib. Comput., 47 (1997), pp. 109–124.

[27] G. M. Slota, K. Madduri, and S. Rajamanickam, Pulp: Scalable multi-objective multi-constraint
partitioning for small-world networks, in Big Data (Big Data), 2014 IEEE International Conference
on, IEEE, 2014, pp. 481–490.

[28] C. W. Smith, M. Rasquin, D. Ibanez, K. Jansen, and M. S. Shephard, A Parallel Unstructured
Mesh Infrastructure, SIAM Journal on Scientific Computing, Submitted (2015).

[29] B. Vastenhouw and R. H. Bisseling, A two-dimensional data distribution method for parallel sparse
matrix-vector multiplication, SIAM Review, 47 (2005), pp. 67–95.

[30] C. Walshaw, M. Cross, and M. G. Everett, Parallel dynamic graph partitioning for adaptive
unstructured meshes, J. Parallel Distrib. Comput., 47 (1997), pp. 102–108.

[31] M. Willebeek-LeMair and A. Reeves, Strategies for dynamic load balancing on highly parallel
computers, IEEE Parallel and Distrib. Sys., 4 (1993), pp. 979–993.

[32] M. Zhou, O. Sahni, M. S. Shephard, K. D. Devine, and K. Jansen, Controlling unstructured mesh
partitions for massively parallel simulations, SIAM J. Sci. Comp., 32 (2010), pp. 3201–3227.

CCR Summer Proceedings 2015 276

OPTIMIZATION OF BLOCK SPARSE MATRIX-VECTOR
MULTIPLICATION ON SHARED-MEMORY PARALLEL

ARCHITECTURES

RYAN A. EBERHARDT∗ AND MARK HOEMMEN†

Abstract. We examine the implementation of block CSR sparse matrix-vector multiplication (SpMV)
for sparse matrices with dense block substructure (optimized for blocks with sizes from 2x2 to 32x32) on
CPU, Intel many-integrated-core, and GPU architectures. Previous work has largely focused on the design
of novel data structures to optimize performance for specific architectures or to store variable-sized, variably-
aligned blocks; this paper instead seeks to optimize SpMV using the standard BCSR format, maintaining
compatibility with existing preconditioners and solvers. We give a set of algorithms that offers an 80x
speedup over Intel Math Kernel Library (MKL) and a 4x speedup over NVIDIA cuSPARSE.

1. Introduction. Sparse matrix-vector multiplication (SpMV) computes the opera-
tion y ← αy + βAx, where A is a sparse matrix and x and y are dense vectors. It domi-
nates the running time in many scientific and engineering applications and is notorious for
sustaining low percentages of machine peak performance due to its memory-bound nature.
Improving performance of SpMV generally requires selecting appropriate data structure
transformations and memory access patterns for the matrices being used and the underly-
ing hardware architecture. Sparse matrices arising from finite-element analysis often exhibit
a dense block substructure, as do matrices from discretizations in which each node in a graph
has multiple degrees of freedom. This block substructure can be exploited to represent a
sparse matrix with less space. Block Compressed Sparse Row (BCSR) is the most popular
format for representing general sparse matrices with constant-sized blocks; it achieves high
performance in the general case without being overly dependent on matrix structure.

This paper contributes algorithms for the efficient execution of SpMV using BCSR on
shared-memory parallel architectures, including traditional CPU architectures (e.g., Sandy
Bridge), the Intel Knights Corner (KNC) many-integrated-core architecture, and NVIDIA
GPU architectures.

2. Related Work. A great amount of literature exists regarding the optimization of
SpMV for various parallel architectures using standard non-block formats. Williams et al.
investigate the tuning of CSR SpMV on AMD and Intel CPU architectures (among others)
[8], and Bell and Garland compare the performance of SpMV using varying sparse matrix
formats on NVIDIA GPUs [1]. Some have explored algorithms that reorder matrices in order
to create a dense block substructure [7][3], and others have created novel data structures
optimized for unaligned blocks or specific hardware architectures [4][5]. However, little
research has been published regarding the optimization of SpMV algorithms for the Block
CSR format on highly parallel architectures. We seek to create general-purpose algorithms
compatible with existing solvers and preconditioners for the BCSR format.

3. BCSR SpMV on Shared-Memory Parallel Architectures.

3.1. Storage Format – Block CSR. The algorithms presented in this paper use
sparse matrices stored in the Block Compressed Sparse Row (BCSR/BSR) format with
column-major blocks. BCSR is the most popular blocked sparse matrix storage format, as
it performs well on nearly any matrix, is not highly dependent on matrix structure, and is
a simple data structure to construct.

∗William Rainey Harper College, r eberhardt4@mail.harpercollege.edu
†Sandia National Laboratories, mhoemme@sandia.gov

R. Eberhardt and M. Hoemmen 277

BCSR stores nonzero blocks contiguously, row by row, in an array val of length nnzb·bs2;
for each nonzero block, an entry is added to an array col idx of length nnzb with its column
index. An array row ptr stores m + 1 values, where each value stores the index of a row’s
first block in val and col idx. For a more in-depth description of the Block CSR format,
please refer to Richard Vuduc’s Ph.D. thesis [6].

We have elected to use column-major blocks in order to improve temporal cache local-
ity for x. By streaming through columns of val, we access x consecutively; a row-major
layout would access segments of val multiple times, causing L1 evictions for larger blocks.
Additionally, using column-major blocks simplifies the reductions for the GPU algorithms
presented in Sections 3.4.1 and 3.4.2.

3.2. Primary Algorithm. In our algorithm, we assign a parallel worker (a thread
or core for CPU and CPU-like architectures, or a warp of threads for GPU architectures)
to one or more block rows. In each of its block rows, a parallel worker iterates down each
column, across the block row, in order to achieve streaming access to the val array (which
has column-major blocks stored row-wise). The manner in which a parallel worker does
this is tuned for different hardware architectures (e.g., for GPU architectures, each warp
has threads enabling it to iterate through multiple columns at a time) and is described in
Sections 3.3 and 3.4.

3.3. CPU and Many-Integrated-Core Architectures. For these architectures,
we delegate the block rows of the sparse matrix across n threads, such that each thread is
responsible for approximately mb/n block rows.

Each thread iterates over its block rows serially; for each block row, a thread re-
trieves pointers to the start and end of the row in the val and col idx arrays by retrieving
row ptr[thread idx] and row ptr[thread idx+1]. It then iterates from this first block pointer
to the last block pointer. In each block iteration, the algorithm finds the column index of
the block in col idx[block ptr] and iterates over the columns within the block. In each col-
umn iteration, the algorithm retrieves xblock,col, then iterates through each element in the
column, multiplying by xblock,col and updating a temporary output array in registers. After
processing the block row, the thread updates the output array y. No interactions between
threads are present.

A pseudocode implementation of this algorithm is shown in Algorithm 5 and a diagram
of the memory access pattern is shown in Figure 3.1.

Algorithm 5 BCSR SpMV kernel for CPU architectures. r and c denote a thread’s position
(row, column) within a block.

1: target block row ← thread idx
2: first block ← row ptr[target block]
3: last block ← row ptr[target block + 1]
4: local out[bs]← {0}
5: for block ← first block; block < last block; block++ do
6: jb← col idx[block]
7: for c← 0; c < bs; c++ do
8: vec this col← vec[jb][c]
9: for r ← 0; r < bs; r++ do

10: local out[r] += val[block][c][r] ∗ vec this col
11: for r ← 0; r < bs; r++ do
12: global out[target block row][r] += local out[r]

278 Optimization of Block Sparse Matrix-Vector Multiplication

[
T0, I0 T0, I1
T0, I2 T0, I3

][
T0, I4 T0, I5
T0, I6 T0, I7

][
T0, I8 T0, I9
T0, I10 T0, I11

]
[

T1, I0 T1, I1
T1, I2 T1, I3

][
T1, I4 T1, I5
T1, I6 T1, I7

][
T1, I8 T1, I9
T1, I10 T1, I11

]
[

T2, I0 T2, I1
T2, I2 T2, I3

][
T2, I4 T2, I5
T2, I6 T2, I7

][
T2, I8 T2, I9
T2, I10 T2, I11

]

Fig. 3.1: Matrix access pattern for CPU architectures. Ta, Ib indicates thread a, iteration
b. Each thread is responsible for one block row.

Memory access patterns are highly optimal for this algorithm. Each thread achieves
streaming access to val; the access pattern is also predictable by a hardware prefetcher, so
access latencies are reduced. If the architecture offers a large cache and bs is small, the
algorithm also achieves streaming access to x and col idx. row ptr is accessed only twice
per thread, so its memory access cost is generally insignificant.

This algorithm is also friendly to SIMD vectorization. If bs is known at compile time,
the innermost loop over the elements in a column has compile-time bounds and can be
vectorized by the compiler. In our tests, vectorization provided up to 4.7x the performance
of non-vectorized code on KNC.

Reuse of x is limited; though better than naive non-block CSR, x is reused a maximum
of bs times. Performance could be improved by tiling blocks to improve temporal locality;
this possibility is discussed in Section 5, Conclusions and Future Work.

3.4. GPU Architectures. In this section, we seek to adapt the previous algorithm for
highly multi-threaded GPU architectures. The CUDA programming model operates with a
large number of threads operating in SIMT (single instruction, multiple thread) style, where
a group of 32 threads (known as a warp) concurrently execute the same instruction. The
threads in a warp must work cooperatively; if threads diverge and issue different sets of
instructions, the warp scheduler will mask off parts of the warp, executing different branch
paths separately and reducing the rate at which instructions can be issued.

For optimal performance, the threads in a warp must also access contiguous segments
of memory. NVIDIA devices have a global memory bus width of 128 bytes, which can hold
16 8-byte double-precision values. If 16 threads access a sequential range of doubles that
lie in a 128-byte row of DRAM in the same SIMD instruction issue, the memory accesses is
“coalesced” into a single memory access instruction.

In the following three sections, we propose algorithms that each assign a warp to a single
block row, but assign the threads within a warp to the elements in a block row in different
ways based on the block size of the matrix.

3.4.1. Block row per warp, operating by block. In this algorithm, a warp is
assigned to a single block row, and threads in the warp are assigned to elements in the
block row column-wise (see Figure 3.2 for an illustration of thread assignment). To cover
the entire block row, a warp iterates over the row’s blocks, handling bs2/32 blocks at a time,
where bs is the block size. This is the number of blocks that a warp can cover completely if
each thread is assigned to a single element. For example, with a block size of 3, the warp can
cover 3 complete blocks (27 elements) at a time. The warp will only cover complete blocks;
in the case of 3x3 blocks, five threads will be inactive in each iteration (32− (3 · 3) · 3).

R. Eberhardt and M. Hoemmen 279

Because a warp only covers complete blocks, a thread’s assigned position within a block
will never change between iterations. On initialization, a thread calculates the index of the
block row it is targeting, finds pointers to the start and end of its row from row ptr, and
finds a pointer to the block it should begin its work on using the row start pointer and
its lane number. It also calculates its assigned position within a block (r and c). It then
iterates through the block row, beginning at its assigned block and advancing by bs2/32
blocks at a time (the number of complete blocks that the warp can cover), multiplying its
target element in A by the corresponding value from x and adding the product to a register
that it uses to maintain a running total. Once the threads in a warp have iterated through
a block row, threads that covered the same vertical (r) position in a block reduce the values
stored in their local registers and write the reduced output to global memory (Figure 3.3).

This algorithm is described in pseudocode in Algorithm 6, and its memory access pattern
is illustrated in Figure 3.2.

Algorithm 6 Block-by-block BCSR SpMV kernel for GPU architectures. r and c denote a
thread’s position (row, column) within a block.

1: bs← block size
2: target block row ← (thread block idx ∗ thread block dim+ thread idx)/32
3: lane← thread idx%32
4: first block ← row ptr[target block]
5: last block ← row ptr[target block + 1]
6: target block ← first block + lane/(bs · bs)
7: c← (lane/bs)%bs
8: r ← lane%bs
. Shared memory for reduction step:

9: shared out← <alloc thread block size · sizeof(double) bytes shared mem>
10: shared out[thread idx]← 0
11: if lane < 32/(bs ∗ bs) ∗ (bs ∗ bs) then . Only process whole blocks

. Iterate through block row:
12: local out← 0
13: for ; target block < last block; target block += 32/(bs · bs) do
14: x elem← x[col ind[target block]][c]
15: A elem← A[target block][c][r]
16: local out += x elem ·A elem

. Reduction:
17: shared out← local out
18: stride← round up to power of two((32/bs)/2)
19: for ; stride ≥ 1; stride /= 2 do
20: if lane < stride · bs && lane+ stride · bs < 32 then
21: shared out[thread idx] += shared out[thread idx+ stride · bs]

. Write reduced value to global memory:
22: if lane < bs then
23: global out[target block row][lane] += shared out[thread idx]

This algorithm exhibits high-performing memory access patterns for val and x. Accesses
to val will be fully coalesced. Accesses to x are fully coalesced when the block size is 2 and
partially coalesced for larger block sizes. Accesses to row ptr and writes to global out
are generally not coalesced, but these transactions represent an insignificant portion of all
memory operations.

280 Optimization of Block Sparse Matrix-Vector Multiplication

[
T0 T2
T1 T3

][
T4 T6
T5 T7

][
T0 T2
T1 T3

][][]
[

T8 T10
T9 T11

][
T12 T14
T13 T15

][
T8 T10
T9 T11

][
T12 T14
T13 T15

][
T8 T10
T9 T11

]
[

T16 T18
T17 T19

][
T20 T22
T21 T23

][
T16 T18
T17 T19

][
T20 T22
T21 T23

][]
1st iteration 2nd iteration 3rd iteration

Fig. 3.2: Matrix access pattern of the by-block algorithm for a matrix with 2x2 blocks. The
warp size has been reduced to 8 for the purposes of visualization (though in practice, the
warp size will always be 8). Warp 0 (threads 0-7) handles block row 0, warp 1 (threads
8-15) handles block row 1, and warp 2 (threads 16-23) handles block row 2.

[
y01
y02

]
[
y11
y12

]
[
y21
y22

]

←− T0, T2, T4, T6
←− T1, T3, T5, T7

←− T8, T10, T12, T14
←− T9, T11, T13, T15

←− T16, T18, T20, T22
←− T17, T19, T21, T23

Fig. 3.3: Warp reduction for the matrix-vector multiplication example shown in Figure 3.2.
Each thread in a warp reduces with other threads that also covered the same row within a
block; the output is then written to global memory.

 T0 T3 T6
T1 T4 T7
T2 T5 T8

 T9 T12 T15
T10 T13 T16
T11 T14 T17

 T18 T21 T24
T19 T22 T25
T20 T23 T26

 T0 T3 T6
T1 T4 T7
T2 T5 T8

 T32 T35 T38

T33 T36 T39
T34 T37 T40

 T41 T44 T47
T42 T45 T48
T43 T46 T49

 T50 T53 T56
T51 T54 T57
T52 T55 T58

 T32 T35 T38
T33 T36 T39
T34 T37 T40

 T64 T67 T70

T65 T68 T71
T66 T69 T72

 T73 T76 T79
T74 T77 T80
T75 T78 T81

 T82 T85 T88
T83 T86 T89
T84 T87 T90

 T64 T67 T70
T65 T68 T71
T66 T69 T72

1st iteration 2nd iteration

Fig. 3.4: Matrix access pattern of the by-block algorithm for a matrix with 3x3 blocks. Note
that five threads per warp (e.g., warp 0, threads 27-31) are left inactive, as they do not cover
a complete block.

R. Eberhardt and M. Hoemmen 281

Unfortunately, accesses to col idx are generally not coalesced, and since the values in
col idx are required to access x, this adds latency to those memory transactions. However,
as the algorithm uses few registers, many warps may fit into the streaming multiprocessors,
so the GPU can generally hide the latency and keep the memory bus saturated by switching
between warps.

Each thread accumulates a result in a register and there is no interaction between
threads until the final reduction, so latency is low. The reduction always occurs within a
warp, so no synchronization primitives are required.

While this algorithm theoretically achieves 100% theoretical thread utilization for block
sizes that are powers of two (because warps can cover blocks evenly, with no threads leftover),
it potentially produces a large number of inactive threads for other block sizes. Consider
the case of 3x3 blocks; a warp can cover only 3 full blocks (27 elements), leaving 5 threads in
each warp (15.6%) inactive. (See Figure 3.4.) The algorithm uses few registers and achieves
high occupancy, so it is generally able to issue enough instructions from a large number of
warps to keep the memory bus saturated despite this decrease in active threads. However,
this is an important consideration, and performance does decrease relative to the algorithm
described in the next section (which is able to handle these cases more efficiently) for 3x3
and 5x5 blocks (see Figure 4.4).

A more significant problem is the block size limitation that the whole-block constraint
imposes. Because a warp of only 32 threads must cover an entire block, this algorithm
cannot multiply matrices that have block sizes larger than 5. This motivates the design of
a similar algorithm that better handles large block sizes.

3.4.2. Block row per warp, operating by column. This algorithm is similar to
the previous one, but relaxes the requirement that warps cover whole blocks. Instead,
warps cover whole columns, enabling larger block sizes (up to 32x32, where a warp would
cover a single column) and a more efficient handling of matrices with block sizes that are
not powers of two. Unlike the previous algorithm, a warp iterates through its block row’s
columns, covering bs/32 columns at a time. With the whole-block requirement replaced
with a whole-column requirement, the assigned vertical position of a thread within a block
will never change, but a thread must compute its target block and target column in every
iteration. The algorithm is shown in pseudocode in Algorithm 7 and its memory access
pattern for 3x3 blocks – improved over that of the previous algorithm – is shown in Figure
3.5.

Like the previous block-by-block algorithm, this algorithm has minimal interaction be-
tween threads and achieves coalesced or partially coalesced accesses to val and x, but it
is now able to handle large block sizes more efficiently. For the case of a matrix with 3x3
blocks, this algorithm has only 2 inactive threads (an improvement from the 5 inactive
threads of the previous algorithm for this scenario). However, this comes at the cost of
increased latency from integer operations. The algorithm must compute a block index and
a horizontal position within that block, and the memory requests stall on these operations.
By maximizing occupancy, we are usually able to minimize this additional latency, but the
previous algorithm tends to outperform this one for block sizes up to 5x5.

3.4.3. Row-per-thread. When block sizes are sufficiently large, a simpler, more effi-
cient algorithm may be introduced. For these cases, a CUDA thread block is assigned to a
block row, and each thread within a thread block is responsible for a single row within the
block row. A thread iterates through its assigned (non-block) row, multiplying each element
by the appropriate value from x and accumulating the results in a register. A simple version
of this algorithm is shown in Algorithm 8.

This algorithm achieves fully-coalesced accesses to val when the block size is a multiple

282 Optimization of Block Sparse Matrix-Vector Multiplication

Algorithm 7 Column-by-column BCSR SpMV kernel for GPU architectures.
1: bs← block size
2: target block row ← (thread block idx ∗ thread block dim+ thread idx) / 32
3: lane← thread idx % 32
4: first block ← row ptr[target block]
5: last block ← row ptr[target block + 1]
6: target col← first block · bs+ lane / bs
7: r ← lane % bs
. Shared memory for reduction step:

8: shared out← <alloc thread block size · sizeof(double) bytes shared mem>
9: shared out[thread idx]← 0

10: if lane < (32 / bs) ∗ bs then . Only process whole columns
. Iterate through columns:

11: local out← 0
12: for ; target col < last block · bs; target col += 32 / bs do
13: block ← target col / bs
14: c← target col % bs
15: A elem← A[block][c][r]
16: x elem← x[col ind[block]][c]
17: local out += x elem ·A elem

. Reduction:
18: shared out← local out
19: stride← round up to power of two((32 / bs) / 2)
20: for ; stride ≥ 1; stride /= 2 do
21: if lane < stride · bs && lane+ stride · bs < 32 then
22: shared out[thread idx] += shared out[thread idx+ stride · bs]

. Write reduced value to global memory:
23: if lane < bs then
24: global out[target block row][lane] += shared out[thread idx]

 T0 T3 T6
T1 T4 T7
T2 T5 T8

 T9 T12 T15
T10 T13 T16
T11 T14 T17

 T18 T21 T24
T19 T22 T25
T20 T23 T26

 T27 T0 T3
T28 T1 T4
T29 T2 T5

 T32 T35 T38

T33 T36 T39
T34 T37 T40

 T41 T44 T47
T42 T45 T48
T43 T46 T49

 T50 T53 T56
T51 T54 T57
T52 T55 T58

 T59 T32 T35
T60 T33 T36
T61 T34 T37

 T64 T67 T70

T65 T68 T71
T66 T69 T72

 T73 T76 T79
T74 T77 T80
T75 T78 T81

 T82 T85 T88
T83 T86 T89
T84 T87 T90

 T91 T64 T67
T92 T65 T68
T93 T66 T69

1st iteration 2nd iteration

Fig. 3.5: Matrix access pattern of the by-column algorithm for a matrix with 3x3 blocks.
Note that for this case, only two two threads per warp (e.g., warp 0, threads 30-31) are left
inactive, an improvement over the by-block algorithm.

R. Eberhardt and M. Hoemmen 283

Algorithm 8 Simple row-per-thread BCSR SpMV kernel.
1: bs← block size
2: target block row ← thread block idx
3: r ← lane← thread idx
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: if r < bs then
7: local out← 0
8: for block ← first block; block < last block; block++ do
9: for c← 0; c < bs; c++ do

10: local out += x[col ind[block]][c] ·A.val[block][c][r]
11: global out[target block row][r]← local out

of 16 and partially-coalesced accesses when this is not the case. As threads use few registers,
depend on little arithmetic for memory requests, and do not interact with other threads,
occupancy is high and latency is low. Additionally, the inner loop can be unrolled for
decreased instruction traffic and increased instruction-level parallelism.

In the basic implementation shown in Algorithm 8, access to x is not coalesced. This
problem can be remedied by loading a portion of x into shared memory in a fully-coalesced
fashion, where it can be reused by all threads in a thread block. An implementation of this
is shown in Algorithm 9. Using shared memory in this way requires two barrier synchro-
nizations for every block iteration, but we found this cost not to be significant.

Algorithm 9 Improved row-per-thread BCSR SpMV kernel with shared memory for x.
1: bs← block size
2: target block row ← thread block idx
3: r ← lane← thread idx
4: first block ← row ptr[target block row]
5: last block ← row ptr[target block row + 1]
6: shared x← <alloc thread block size · sizeof(double) bytes shared mem>
7: if r < bs then
8: local out← 0
9: for block ← first block; block < last block; block++ do

10: Barrier synchronization
11: shared x[thread idx]← x[col ind[block]][thread idx]
12: Barrier synchronization
13: for c← 0; c < bs; c++ do
14: local out += shared x[c] ·A.val[block][c][r]
15: global out[target block row][r]← local out

We find that this algorithm performs best for block sizes ≥ 16, as access to val and x
have the opportunity to be fully-coalesced. See Figure 4.4.

The performance of this algorithm would seem to depend heavily on how well the matrix
block size is matched to the thread block size; since the thread block size must be a multiple
of 32, it would seem that the algorithm would perform poorly for a block size of 33, where
31 of 64 threads would be inactive. While performance certainly drops in this case, we did
not notice as great of a performance impact as expected. The algorithm appears to have
sufficient occupancy and instruction-level parallelism to hide latency despite the drop in

284 Optimization of Block Sparse Matrix-Vector Multiplication

active threads.

4. Experimental Results. In this section, we examine the performance of our algo-
rithms and compare them against vendor implementations (Intel Math Kernel Library and
NVIDIA cuSPARSE) on Intel Sandy Bridge, Intel Knights Corner, and NVIDIA Kepler
architectures.

Experiments with Intel hardware were run on the Sandia National Laboratories Comp-
ton test bed with two 8-core Sandy Bridge Xeon E5-2670 processors running at 2.6GHz
and a KNC Xeon Phi 3120A card. Intel ICC 16.0.0, MKL 11.3 pre-release, and hwloc 1.6.2
were used. Experiments with NVIDIA hardware were run on the Shannon test bed with
an NVIDIA K80S dual-GPU card (only one GPU on the card was used). GCC 4.9.0 and
CUDA 7.0.18 were used. Implementations of the GPU algorithms used a texture cache to
optimize accesses to x. Test matrices were obtained from the University of Florida Sparse
Matrix Collection [2] and are shown in Table 4.1. Matrices were selected from a variety of
real-world applications.

Plot Name bs Dimensions (in
blocks)

nnzb
(nnzb/row) Description

GT01R 5 1.60K x 1.60K 20.37K
(13) 2D inviscid fluid

raefsky4 3 6.59K x 6.59K 111.4K
(17)

Container buck-
ling problem

bmw7st 1 6 23.6K x 23.6K 229.1K
(10) Car body analysis

pwtk 6 36.3K x 36.3K 289.3K (8) Pressurized wind
tunnel

RM07R 7 545K x 545K 1.504M
(28)

3D viscous turbu-
lence

audikw 1 3 314K x 314K 4.471M
(14)

AUDI crankshaft
model

Table 4.1: Overview of test block matrices used in experimental evaluation.

To understand how the algorithms perform on different architectures with matrices of
different block sizes, we partitioned the raefsky4 test matrix (a finite-element static analysis
of the buckling of a container) into blocks with sizes from 2 to 32, placing nonzero elements
in the appropriate aligned blocks and filling in zeros. The results are shown in Figure 4.4.
Performance of our algorithm on KNC peaks when the block size is 8 or 16, as the compiler
perfectly vectorizes the code. On Kepler, we find that our by-block algorithm performs best

R. Eberhardt and M. Hoemmen 285

for the small block sizes it can handle, our by-column algorithm performs best for block
sizes up to 16, and after that point, our row-per-thread algorithm – designed to handle
large block sizes – performs best.

We also examined how our algorithm scales over a varying number of cores within a
single node. For Sandy Bridge, we tested the algorithm with up to 8 cores on a single
socket, and used two sockets to test with up to 16 cores. Results are shown in Figure 4.5.
Performance appears to scale nearly linearly with additional cores within a node, even across
sockets. While we performed no tests with multiple nodes, we expect this algorithm will
continue to scale well due to a lack of inter-thread communication.

We found that enabling hyperthreading on Sandy Bridge did not yield significant bene-
fits and actually reduced performance in some cases. However, using two hardware threads
with the KNC architecture improved performance, likely due to a KNC in-order core’s
inability to issue instructions quickly enough. Using four hardware threads provided no
significant increase in performance over two hardware threads.

We partitioned our test matrices into their dominant block sizes (see Table 4.1) and
compared our algorithms to vendor implementations. We measured the mean time kernels
took to execute and divided by the amount of unique data read (total size of x, val, col idx,
and row ptr) to determine the achieved throughput. Results are shown in Figures 4.1, 4.2,
and 4.3. In general, we find that the algorithms performed best with larger blocks (as they
were able to achieve better reuse of x) and with larger matrices, as the time spent iterating
through rows represented more of the total time than the fixed setup cost for each thread.

GT01
R

ra
efs

ky
4

bm
w7s

t 1
pw

tk

RM
07

R

au
dik

w
1

0

20

40

60

th
ro

ug
hp

ut
(G

B
/s

)

Comparison against vendor implementations for Sandy Bridge

MKL BSRMV MKL CSRMV Proposed BSRMV

Fig. 4.1: Performance comparison on the Sandy Bridge CPU architecture for various test
matrices using each matrix’s dominant block size (see Table 4.1).

286 Optimization of Block Sparse Matrix-Vector Multiplication

GT01
R

ra
efs

ky
4

bm
w7s

t 1
pw

tk

RM
07

R

au
dik

w
1

0

10

20

30

th
ro

ug
hp

ut
(G

B
/s

)

Comparison against vendor implementations for Xeon Phi KNC

MKL BSRMV MKL CSRMV Proposed BSRMV

Fig. 4.2: Performance comparison on the Knights Corner (KNC) Xeon Phi architecture for
various test matrices using each matrix’s dominant block size (see Table 4.1).

R. Eberhardt and M. Hoemmen 287

GT01
R

ra
efs

ky
4

bm
w7s

t 1
pw

tk

RM
07

R

au
dik

w
1

0

20

40

60

80

100

120

th
ro

ug
hp

ut
(G

B
/s

)

Comparison against vendor implementations for Kepler

cuSPARSE BSRMV By-block algorithm By-column algorithm

Fig. 4.3: Performance comparison on the Kepler GPU architecture for various test matrices
using each matrix’s dominant block size (see Table 4.1). The blocks of bmw7st 1, pwtk,
and RM07R are larger than 5x5, so they cannot be handled by the by-block algorithm. No
matrices in our test set had blocks large enough to justify the use of the row-per-thread
algorithm, so we have omitted it from this comparison.

288 Optimization of Block Sparse Matrix-Vector Multiplication

0 4 8 12 16 20 24 28 32
0

20

40

60

80

block size

th
ro

ug
hp

ut
(G

B
/s

)
Variable block sizes on KNC

MKL BSRMV

MKL CSRMV

Proposed BSRMV

0 4 8 12 16 20 24 28 32
0

20

40

60

80

block size

th
ro

ug
hp

ut
(G

B
/s

)

Variable block sizes on Kepler

cuSPARSE BSRMV

By-block algorithm

By-column algorithm

Row-per-thread algorithm

Fig. 4.4: Performance of SpMV algorithms running on the Xeon Phi KNC and Kepler GPU
architectures for the raefsky4 test matrix, divided into variable block sizes.

0 4 8 12 16
0

10

20

30

cores

th
ro

ug
hp

ut
(G

B
/s

)

Scaling on Sandy Bridge

MKL BSRMV

Proposed BSRMV (HT disabled)

Proposed BSRMV (HT enabled)

8 16 24 32 40 48 56
0

10

20

cores

th
ro

ug
hp

ut
(G

B
/s

)

Scaling on Xeon Phi KNC

MKL BSRMV

Proposed BSRMV (1 HW thread)

Proposed BSRMV (2 HW threads)

Proposed BSRMV (4 HW threads)

Fig. 4.5: Scaling of our algorithm on a Sandy Bridge Xeon E5-2670 processor and a KNC
Xeon Phi using the raefsky4 test matrix. We tested the impact of hyperthreading (HT) on
the CPU and the impact of hardware (HW) thread usage on the Xeon Phi.

R. Eberhardt and M. Hoemmen 289

5. Conclusions and Future Work. By optimizing memory access patterns and min-
imizing visible latencies, the algorithms presented in this paper are able to outperform the
vendor-provided block sparse matrix-vector implementations and achieve high bandwidth
utilization. However, especially on KNC, additional optimizations may be made to fur-
ther improve the throughput of the algorithms; in many cases, the presented algorithm
currently achieves only 10-20% of the advertised Xeon Phi bandwidth. In particular, a co-
operative threading strategy may be developed so that KNC hardware threads may work
on consecutive block rows and achieve increased temporal cache locality with x. As KNC
is an in-order architecture and this severely limits instruction throughput, a better thread
cooperation strategy will benefit performance.

To improve performance for iterative solvers when nonzero blocks are unevenly dis-
tributed between rows, a preliminary analysis stage may be introduced in which the algo-
rithm groups rows by nnzb/row. The multiplication can then be executed in a multi-pass
style, where each pass includes rows of a certain length, in order to better distribute load
between cores.

Data structure transformations may be required to further improve performance by a
significant margin. Specifically, blocks may be grouped into and processed as tiles in order
to potentially (a) further reduce the sizes of the row ptr and col idx arrays and (b) improve
cache performance for x. Such an optimization may be possible without changing the basic
BCRS format by adding metadata pointing to tiles in the matrix.

6. Acknowledgements. We would like to thank Travis Fisher for reviewing a draft of
this paper. We would also like to thank Carter Edwards, Simon Hammond, and Christian
Trott for reviewing our work and offering technical assistance.

REFERENCES

[1] N. Bell and M. Garland, Implementing sparse matrix-vector multiplication on throughput-oriented
processors, in Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis, ACM, 2009, p. 18.

[2] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Transactions on
Mathematical Software, 38 (2011), pp. 1:1 – 1:25.

[3] V. Eijkhout, Automatic determination of matrix blocks, tech. rep., Department of Computer Science,
University of Tennessee, 2001. LAPACK Working Note 151, 2001.

[4] X. Liu, M. Smelyanskiy, E. Chow, and P. Dubey, Efficient sparse matrix-vector multiplication on
x86-based many-core processors, in Proceedings of the 27th international ACM conference on In-
ternational conference on supercomputing, ACM, 2013, pp. 273–282.

[5] R. Shahnaz and A. Usman, Blocked-based sparse matrix-vector multiplication on distributed memory
parallel computers., Int. Arab J. Inf. Technol., 8 (2011), pp. 130–136.

[6] R. W. Vuduc, Automatic performance tuning of sparse matrix kernels, PhD thesis, Citeseer, 2003.
[7] R. W. Vuduc and H.-J. Moon, Fast sparse matrix-vector multiplication by exploiting variable block

structure, in High Performance Computing and Communications, Springer, 2005, pp. 807–816.
[8] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel, Optimization of sparse

matrix-vector multiplication on emerging multicore platforms, Parallel Computing, 35 (2009),
pp. 178–194.

CCR Summer Proceedings 2015 290

A THREAD-SCALABLE PERFORMANCE PORTABLE UNORDERED
MAP FOR MANYCORE ARCHITECTURES ∗

PAUL R. ELLER† AND H. CARTER EDWARDS‡

Abstract. An unordered map (a.k.a., hash map) is a commonly used container for performant storage
and retrieval of key-value pairs. High performance computing (HPC) algorithms on modern shared-memory
many-core architectures require that an unordered map be thread scalable; that concurrent insert, delete, and
find operations by thousands of threads are performant. Furthermore, these algorithms and the supporting
unordered map must be performance portable across diverse many-core architectures; e.g., Intel Xeon Phi
and NVIDIA GPU.

Kokkos is a programming model and C++ library that enables applications and domain libraries to
develop performance portable C++ code. To better support these codes a collection of commonly used
containers, such as the unordered map, are being developed on the Kokkos library. These containers deviate
from the classic C++ standard containers in order to meet thread-scalability requirements. This paper doc-
uments the design and performance analysis of Kokkos’ performance portable and thread-scalable unordered
map.

1. Introduction. Unordered maps are associative containers that store key-value pairs
and provide fast access to individual elements of the map. Key values are used to uniquely
identify each element, while the mapped value contains the data associated with the key.
Internally the elements are not sorted in any particular order, but are instead organized into
buckets. Each element is inserted into a bucket based on the hash of its key, providing fast
access to individual elements. Unordered maps provide operations such as insert, find, and
delete to modify or retrieve information from the map.

There are many unordered map implementations for CPUs that perform well in serial.
However the number of cores per processor has increased in recent years. More importantly
co-processors such as graphics processing units (GPUs) and Xeon Phi co-processors have
been developed that provide hundreds or thousands of cores per processor. These processors
often require multiple threads per core to obtain good performance, resulting in the need
for algorithms that can effectively take advantage of thousands of threads per processor.
Therefore we need unordered map algorithms that are capable of performing using thousands
of threads in parallel.

In order to obtain good parallel performance on many-core devices, the algorithms must
be both thread-safe and thread-scalable. Thread-safe means that multiple threads must be
able to operate on the container without causing race conditions that can harm the integrity
of the data. Thread-scalable means that the multiple threads must be able to operate on the
container efficiently. Many unordered map implementations do not provide thread-safety,
and the ones that do may not scale to the hundreds or thousands of threads needed to
obtain good performance on many-core architectures.

1.1. Kokkos. Kokkos [9, 8, 10, 11] is a C++ library and programming model for ex-
pressing data parallelism on manycore architectures. Kokkos provides performance portable
parallel algorithms (for, scan, and reduce), atomics, and basic thread scalable containers.
This allows users to write code that can be compiled without modification and run on mul-
tiple different many-core architectures. This minimizes the amount of architecture specific
knowledge that users must possess, while allowing Kokkos to provide architecture specific

∗This is an early version of a paper that will be published in a journal after some additional work is
completed.
†Department of Computer Science, Univerity of Illinois at Urbana-Champaign, eller3@illinois.edu
‡Sandia National Laboratories, hcedwar@sandia.gov

P.R. Eller and H.C. Edwards 291

tuning. Kokkos attempts to provide portable user code that performs as well as architecture
specific code while sticking to a small, straight-forward API.

1.2. Kokkos Unordered Map. Kokkos provides users with access to a thread-safe
and thread-scalable unordered map that runs efficiently on a wide variety of many-core ar-
chitectures as well as traditional CPUs. This unordered map is designed as a hash table with
separate chaining with operations to insert, find, and erase key-value pairs. The unordered
map is designed based on the C++ standard unordered map. However we restrict users to
either insert or delete key-value pairs at a given time and prevent memory from being real-
located within a parallel operation in order to ensure that we obtain high performance on
many-core architectures. This allows us to implement the map as a wait-free linked list and
avoid dealing with additional complications to the data structure that limit performance.

2. Related Work. There are a number of hash map algorithms that have been devel-
oped, but only a few of these algorithms are thread-safe and capable of running on many-
core architectures. Few of these algorithms have been implemented in publically available
libraries. The best available implementations we were able to find were in the CUDA Data
Parallel Primitives Library, the Intel Threaded Building Blocks template library, and the
MultiThreaded Graph Library.

2.1. Non-threaded Hash Maps. A number of CPU based hash maps exist. The
C++ standard library provides an unordered map, but this map is not designed to be
thread-safe and thread-scalable. The Boost library also provides an unordered map, but
once again this is not a thread-safe and thread-scalable implementation. Java provides a
ConcurrentHashMap that provides hash map functionality without requiring the user to
synchronize in multi-threaded applications. However there does not appear to be a simple
approach for running java code on many-core architectures.

2.2. CUDPP. The CUDA Data Parallel Primitives Library [17] is a library of data-
parallel algorithm primitives for GPUs written with CUDA. These primitives are used as
building blocks for a wide variety of data-parallel algorithms. This library includes an
implementation of hash tables based on the work of Alcantara et al. [2, 3]. CUDPP provides
an efficient implementation of this hash table, but the functionality of this table is limited.

Building the hash table requires a list of all keys and values. Once the hash table has
been built, CUDPP does not provide the functionality to add or remove keys from the
hash table. As a result, CUDPP is able to make additional optimizations to gain improved
performance, but only for certain use cases. This does not meet the needs of many of the
applications that we need hash tables for, so we do not further investigate CUDPP.

2.3. Intel Threaded Building Blocks. Intel Threaded Building Blocks (TBB) [21,
19] provides a concurrent hash map implementation capable of running on CPUs and Xeon
Phis. This hash map provides the ability to insert, find, and erase keys in the hash map.
This provides functionality similar to that of Kokkos, although TBB does not run on GPUs.

2.4. MultiThreaded Graph Library. The MultiThreaded Graph Library provides
a scalable hash map [15, 16] capable of running on CPUs. This hash map was in particular
developed to run on a Cray XMT, a massively multithreaded supercomputer. This hash
map uses a linear probing approach and provides the ability to insert, find, and erase keys
in the hash map. This provides functionality similar to that of Kokkos, although this hash
map does not run on GPUs.

2.5. Other Threaded Hash Maps. A few other papers investigate hash tables and
related algorithms on many-core architectures, but they do not provide publically available

292 Thread-Scalable Unordered Map

implementations of their algorithms. Moazeni and Sarrafzadeh [20] presents a compare-
and-swap based lock-free hash table on GPUs that is based on chaining and compares it
to cpu-based OpenMP hash tables and GPU lock-based hash tables, showing significantly
improved performance. Heller et al [18] presents a lazy list-based implementation of a
concurrent set object based on an optimistic locking scheme for inserts and removes.

3. Design and Algorithms. Kokkos’ unordered map is designed as a hash table with
separate chaining; each hash cell is the head of a linked list for the key-value pair associated
with the key’s hash value. Three operations are required: (1) inserting key-value pairs into
the container, (2) finding key-value pairs within the container, and (3) erasing key-value
pairs from the container. The design of these operations is challenged by requirements for
performance and thread scalability. To satisfy these requirements the design of the Kokkos
unordered map deviates from the C++ standard unordered map in two significant ways.

First, a parallel algorithm is restricted to either insert or delete key-value pairs, but not
both. This restriction is enforced through an insertable state; when in the insertable state
insert operations are permitted and erase operations are not. This design decision allows
the insertion algorithm to use a wait-free linked list [13, 14] and avoid dealing with the
“ABA” concurrency race condition that would complicate the underlying data structure
and algorithms, and severely degrade performance. In our experience a particular HPC
algorithm performs either insert or delete operations, but not both. We assume that this
pattern will continue, or algorithms can be reasonably redesigned to use separate insert and
delete phases.

Second, memory may not be reallocated from within a parallel operation. Thus an
algorithm must set the capacity of the unordered map before performing a parallel opera-
tion, count insertion failures due to insufficient memory, reset the capacity after the parallel
operation completes, and then repeat the parallel operation. In our experience the perfor-
mance loss due to increased complexity of data structure, continually checking for insufficient
memory, and reallocating memory from within a parallel operation is larger that the time
required to repeat a simple parallel operation. We assume that this pattern will continue,
or algorithms can be reasonably redesigned to separate the unordered map insertion portion
of the algorithm into its own parallel operation.

Third, the key and value types must be trivially copyable.

3.1. Array-based Data Structure. The unordered map design uses a collection of
arrays to store keys and values, maintain linked lists, and track claimed array entries. The
array design is reflected in the index-based interface, in contrast to the standard C++
unordered map iterator-based interface. This design enables references (a.k.a., indices)
to key-value pairs to be independent of the memory space in which an unordered map
resides, and allows an unordered map to be efficiently copied between memory spaces without
invalidating references. The array-based design also enables optimizations associated with
accessing contiguous arrays.

References to key-value pairs are simple integer index values, as opposed to a C++
iterator type. Three access functions accept an index value: (1) exists(i), (2) key at(i),
and (3) value at(i). The exists function returns whether a key-value entry exists for the
input index. If an entry exists then key at returns the key and value at returns a reference
to the value. If the unordered map is not constant the referenced value is modifiable.

Unordered map arrays are pre-allocated to a specified capacity. Subsequent insert op-
erations claim array entries from this “pool” and erase operations release array entries back
into this “pool.” Claim and release operations are performed by atomically setting and
clearing bits in a bitset.

P.R. Eller and H.C. Edwards 293

3.2. Find Algorithm. The find algorithm (Alg 10) searches the unordered map for
an input key and returns the array index i associated with that key. This is the index into
the unordered map’s key and value arrays: Keys [i] and V alues [i].

Algorithm 10 Unordered Map Find
1: define: E ≡ end-of-list marker
2: input: key
3: i← Start [hash (key) mod #Start]
4: while i 6= E and Keys [i] 6= key do
5: i← Next [i]

6: return i

The unordered map may be instantiated with the hash function used on line 3. The
default function is a 32-bit MurmurHash3 [4]. The hash value, modulo the cardinality of
linked list Start array, provides the starting location of the linked list associated with the
input key (line 3).

The linked list is implemented by a set of entries in the Next array terminated by an
end-of-list marker. The find algorithm iterates this list on lines 4-6 searching for an entry in
the Keys array matching the input key. If a match is found the entry’s index is returned,
otherwise the end-of-list marker is returned.

3.3. Insert Algorithm. The insert algorithm (Alg 11) is designed to be performant
on GPU architectures where in the innermost group (e.g., CUDA warp) threads execute
in “single instruction multiple thread” (SIMT). While CPU architectures do not have this
SIMT performance requirement the algorithm is portable and performant on CPU architec-
tures as well.

The insert algorithm has one of three results. (1) The insert of an input key-value pair
succeeds. (2) An existing key-value pair is found with an equal key so the input value was
not set. (3) The insert fails due to insufficient capacity. A user should count failures within a
parallel reduction algorithm, resize the unordered map to the required capacity, and repeat
the parallel algorithm. A successful insert results in an update of the linked list associated
with the hashed key.

When the first entry is added to a linked list the Start array entry is updated. When a
subsequent entry is added a Next array entry is updated. The memory address of the array
entry to be updated is maintained in the address variable (a.k.a., pointer) a (line 2 and 7).

3.3.1. Search for Input Key. Next the linked list is searched for the input key
(lines 6-9). The linked list may be appended during this iteration so all reads of the Keys
and Next arrays are marked volatile to force reads from shared, global memory. If the key is
found the index of this entry will be returned with an existing status. If during a previous
iteration an entry in the arrays was claimed then this entry is released (line 12). If the
iteration search fails to find the input key then an attempt is made to append the linked
list with the input key and value.

3.3.2. Insert New Key. First an unused array entry must be claimed (line 17). The
claim algorithm searches a bitset for an unclaimed entry, claims that entry by atomically
setting an associated bit in the bitset, and if the atomic-set operation fails it will continue
the search. If an unused entry cannot be found a failed status is returned (line 19).

When an entry is successfully claimed the Keys and V alues array entries are set. A
memory-fence is applied to insure that these array entries are written in global memory
before attempting to update the linked list. This memory-fence guarantees that the Keys
entry queried on line 6 corresponds to the linked list entry queried on line 7.

294 Thread-Scalable Unordered Map

Algorithm 11 Unordered Map Insert
1: input: key, value
2: a← address of (Start [hash (key) mod #Start])
3: j ← E
4: while ! result do
5: i← at (a)
6: while i 6= E and Keys [i] 6= key do
7: a← address of (Next [i])
8: i← at address (a)

9: if i 6= E then
10: if j 6= E then
11: release(j)

12: result← (existing, i)
13: else
14: if j == E then
15: j ← claim()
16: if j = E then
17: result← (failed, E)
18: else
19: V alues [j]← value
20: Keys [j]← key . memory fence

21: if j 6= E and CAS (a,E, j) then
22: result← (success, j)

23: return result

The linked list is updated with an atomic compare-and-swap (CAS on line 25). If this
update is successful the index of this new entry is returned with a success status. The CAS
update will fail when another thread appends the linked list between this thread’s search
(lines 6-9) and attempt to append. A CAS failure could be due to the same or different key
appended to the linked list. In either case the linked list search iteration must resume.

3.3.3. Hashing Quality. The linked list is exclusively appended while insert opera-
tions are permitted. This design decision allows the linked list search iteration to resume at
the previous location and only search new entries that have been appended since the prior
search. We assume that the hashing function will distribute the set of inserted keys such
that the cardinality of any given linked list will be relatively small compared to the capacity
of the unordered map. If this “hashing quality” assumption does not hold then performance
will degrade with the cardinality of the linked lists and frequency of searching long linked
lists.

An entry is claimed only once per insert operation (line 17). This entry is held until the
insert operation succeeds (line 24) or an existing entry is found (line 8) to avoid repeated
claim and release operations. If an entry is claimed and subsequently the same input key is
appended by another thread then the entry is released (line 12). Even with good hashing
quality the claim function requires an increasing effort to find an unused array entry. As
such the best performance is obtained with both good hashing quality and keeping the
unordered map no more than 85% filled (a.k.a., 85% density). While insert operation are
unlikely to fail even up to 95% filled, performance typically degrades beyond 85% filled.

3.3.4. SIMT Performance. When a SIMT group concurrently calls the insert oper-
ation their execution will be “lock step.” The insert algorithm’s iterations and branches are
carefully designed to avoid potential SIMT deadlock conditions. Furthermore, iterations are

P.R. Eller and H.C. Edwards 295

designed so that thread members of a SIMT group will either execute iterations relevant
to the thread’s progress through the algorithm, or will complete the algorithm and thus be
masked out of the SIMT group’s iterations.

3.4. Erase Algorithms. The erase algorithm has two distinct phases: (1) marking
entries to be removed from the unordered map and then (2) removing marked entries from
the linked list. Marking entries to be removed is simply finding the entry and releasing
its corresponding bit in the bitset. Since erase and insert operations are not permitted to
occur within the same parallel operation releasing the entry will not conflict with the insert
algorithm.

Algorithm 12 Unordered Map Erase Marking
1: input: key
2: i← find (key)
3: if i 6= E then
4: release(i)

5: return i 6= E

The removing phase of the erase algorithm (Alg 13) executes a parallel loop over all
potential linked lists. If a member has been marked as released in the bitset then it is
removed from the linked list.

Algorithm 13 Unordered Map Erase Removing
1: parallel for all i ∈ [0..#Start) do
2: j ← Start [i]
3: . Remove entries until a new start is found
4: while j 6= E and ! Bits [j] do
5: n← Next [j]
6: Next [j]← E
7: Start [i]← n
8: j ← n

9: if j 6= E and Bits [j] then
10: . Remove remaining entries
11: p← j
12: j ← Next [p]
13: while j 6= E do
14: n← Next [j]
15: if Bits [j] then
16: p← j
17: else
18: Next [p]← n
19: Next [j]← E

20: j ← n

21: end for

4. Performance Analysis.

4.1. Test Setup. Performance tests are run on the Compton and Shannon test bed
clusters located at Sandia National Lab. Test bed configurations are shown in figure 4.1.
Compton contains nodes with dual socket Intel Xeon CPUs and Intel Xeon Phi co-processors.
Shannon contains nodes with dual socket Intel Xeon CPUs and Nvidia Kepler K40M GPUs.

296 Thread-Scalable Unordered Map

Table 4.1: Configurations of test bed clusters.

Name Compton Shannon
CPU 2x Intel E5-2670 2.6GHz HT-on 2x Intel E5-2670 2.6 GHz HT-off
Co-Processor Intel Xeon Phi 57c 1.1GHz Nvidia K40m ECC on
Memory 24 GB 128 GB
CPU Threads 32 32
Device Cores 57 (228 Threads) 2880
OS RedHat 6.1 RedHat 6.5
Compiler ICC 15.0.1 GCC 4.7.2 + CUDA 7.0.28

Each test is performed using a single device, where device refers to a dual socket Xeon node,
a single Xeon Phi, and a single Nvidia Kepler GPU respectively.

We compare the performance of Kokkos on Intel Xeon CPUs using OpenMP [22], Nvidia
Kepler GPUs using CUDA [1], and Intel Xeon Phis using OpenMP. We were not able to
find any comparable unordered map implementations on GPUs to compare with Kokkos.
Kokkos is compared against TBB on Xeon Phis. We look at the number of insert, find, and
erase operations we are able to perform per microsecond as we increase the number of keys
used in each test in order to more clearly understand the cost of each operation.

First we run throughput performance tests to better understand how these maps are
able to perform under fairly straightforward circumstances. We use these tests to evaluate
the ability of the unordered maps to efficiently insert, find, and erase key-value pairs under
a variety of circumstances. Each of these tests uses a parallel for operation on key counts
ranging from 10 thousand to 82 million. All tests use 32-bit unsigned integers for the key
and one or more 32-bit unsigned integers for the value. We experiment with the following
parameters:

• Capacity: The number of key-value pairs that the unordered map is initialized to
hold. We fix the density of the map and create unordered maps that have low
(115%), medium (172%), and high (230%) capacities compared to the number of
keys we plan to insert. This allows us to observe how the unordered map performs
when there are varying amounts of free space in the map.

• Density: The percentage of the unordered map that is filled with keys. We fix the
capacity of the map and increase the number of keys in the map up to the capacity.
This allows us to observe how the unordered map performs as the number of empty
elements in the map decreases and the number of conflicts increases.

• Repeats: The number of times a particular key value is repeated. We insert, find, or
erase each key from 1 to 8 times. This allows us to see how the performance changes
when some keys are used multiple times, in particular when multiple threads may
access the map with the same or similar keys.

• Value Size: The memory size of the value in the key-value pair. We vary the value
size from 1 to 32 unsigned integers. This allows us to observe how performance
changes as the map contains more data.

• Key Pattern: The pattern of keys used by threads to access the map. We explore
three key patterns:

– Sequential - Each thread uses keys in increasing order (0,1,2,3,...)
– Strided - Each thread uses keys separated by a stride (0,16,32,48,...)
– Random - We create a sequential array of keys and then randomly permute the

array. Each thread accesses this array in sequential order to obtain a random

P.R. Eller and H.C. Edwards 297

key.
This allows us to observe how performance changes as threads use keys that are
nearby or far apart.

Algorithm 14 shows the Kokkos insert throughput performance test. Similar perfor-
mance tests are used for find and erase. For each test we set the default case as using the
sequential key pattern, no repeats, a value size of one, and a capacity about 15% larger than
the number of key-value pairs. We execute each performance test ten times and report the
fastest run time for each test.

4.2. Similarity of Find and Erase. The find and erase performance tests show fairly
similar patterns throughout each test. This is expected since erase is implemented using
find. Erase is slightly slower than find due to having to perform some extra operations to
remove each element from the map. For simplicity we only focus on the performance of
insert and find in most of the following results.

Algorithm 14 Throughput Insert Performance Test
1: define: keytype ≡ unsigned int
2: define: valuetype ≡ array of size VSIZE
3: define: maptype ≡ map(keytype, valuetype)
4: map← maptype(maxkey ∗ capacity)
5: Start timer
6: parallel for all i ∈ [0..N) do
7: value ← valuetype(VSIZE)
8: if test = sequential then
9: insert(i/repeat,value)

10: if test = strided then
11: insert(i % N / repeat,value)

12: if test = shuffled then
13: insert(random values(i),value)

14: end for
15: Fence
16: Stop timer

4.3. Comparison with TBB. We first run performance tests comparing the perfor-
mance of Kokkos and Intel Threaded Building Blocks (version 4.3 update 5) on Xeon Phis,
allowing us to better understand how these unordered map implementations compare.

Figure 4.1 clearly shows that Kokkos outperforms TBB on Xeon Phis for the default
case. Kokkos in particular excels at inserting and erasing key-value pairs, significantly
outperforming TBB. Kokkos also outperforms TBB at finding values in the map, although
TBB performs fairly well, approaching the performance of Kokkos at times. Additionally
we can see that the average performance of TBB can be much lower than the best case
performance, demonstrating that there can be significant variation in runtimes for TBB.
Meanwhile Kokkos gives very consistent performance, achieving average runtimes that are
very similar to the best case performance. Additional tests for capacity, density, repeats,
value size, and key pattern also showed Kokkos outperforming TBB. Since we can clearly
see that Kokkos performs better on Xeon Phis than TBB, we will focus only on Kokkos for
the remaining performance tests.

4.4. Throughput Performance Tests.

4.4.1. Capacity. We experiment with fixing the density of the map and experimenting
with different capacity sizes to show the impact of having extra space in the map, making

298 Thread-Scalable Unordered Map

Fig. 4.1: Comparison of Kokkos and TBB minimum and average performance for 10 tests on
the Xeon Phi for the insert, find, and erase operations for the default case (115% capacity,
fixed density, no repeats, value size of 1, and sequential key pattern).

it less likely that multiple keys will hash to the same array index. We would expect having
some extra capacity to improve performance due to having fewer keys mapping to the same
array index.

Fig. 4.2: Kokkos insert and find performance for unordered maps with low (115%), medium
(172%), and high (230%) capacities.

Figure 4.2 shows the insert and find performance for low, medium, and high capacities
as we increase the number of keys. Inserting values on the Xeon CPUs and Xeon Phis
maintained fairly consistent performance as we increase the capacity. Both devices show
some slight performance benefit due to using higher capacities. The Kepler GPU shows
improved performance for lower capacities at smaller key counts and higher capacities at
larger key counts. We also see that for the largest key counts, there is a drop in performance
on the GPU. Additional tests demonstrated that once the initial capacity becomes large
enough, there is a performance drop off regardless of the number of keys inserted into the
map.

When finding keys, all three devices showed improved performance at smaller key counts
for low capacities, but slight better performance at larger key counts for higher capacities.
The Xeon CPU and Xeon Phi both showed more consistent performance for all key counts,
while the Kepler GPU showed more variable performance. When using texture memory for
the largest test for on the Kepler GPU, we ran out of out of memory and instead use the
run time from the test without texture memory.

P.R. Eller and H.C. Edwards 299

We note that the peak performance for the insert and find operations on the Kepler
GPU occur when data fits into the 1.5MB L2 cache on the GPU. Once data no longer
fits into L2 cache, we see decreased performance. Similarly for the find operation on the
Xeon CPU we see decreased performance once data no longer fits into the 20MB cache.
The insert operation is not able to take advantage of the cache due to the data structures
being continuously modified, causing each thread to have to read data from main memory.
Therefore the insert operation performance on the Xeon CPU maintains fairly constant
performance.

4.4.2. Density. We experiment with fixing the capacity of the map and then using an
increasing number of keys. This allows us to better understand the performance as the map
density increases. We would expect performance to become worse as the density increases
due to the increased likelihood that multiple keys will map to the same array index.

Fig. 4.3: Kokkos insert and find performance for unordered maps with an initial capacity of
about 95 million for up to 95 millions key-value pairs. We increase the number of key-value
pairs in the map to vary the density of the map. We use no repeats, a value size of 1, and
the sequential key pattern.

Figure 4.3 shows that the insert and find performance for all three devices slowly de-
creases as we approach full capacity. However we do not see a large drop off in performance
as we near full capacity, instead only seeing slight performance degradation on each device.
We see a slightly larger drop in performance for the 99% capacity test, although this de-
crease is still fairly small. We also note that some inserts failed for the 99% capacity test.
This shows that the unordered map maintains good performance for different map densi-
ties, although it may fail to insert all values if the number of key-value pairs approaches the
capacity of the map.

4.4.3. Repeats. We experiment with using keys that are repeated multiple times.
Repeating keys tests the ability of each device to perform well when multiple threads may
be calling functions with the same or nearby keys. We expect insert and erase performance
to improve as we have more repeats due to finding that the key-value pair they are looking
for has already been inserted or erased, allowing the thread to return early. We expect
find performance to improve due to the increased likelyhood that a key-value pair resides in
cache due to that key-value pair or a nearby key-value pair having already been found.

Figures 4.4 and 4.5 show the impact of using repeated key values on inserting keys into
the map and finding keys in the map. As expected, the performance increases for all devices
as we increase the number of repeated keys. We see fairly similar performance for each
number of repeats for smaller key counts, but for larger key counts we see more significant

300 Thread-Scalable Unordered Map

Fig. 4.4: Kokkos insert performance with key values repeated 1, 2, 4, or 8 times on the
Kepler GPU (up to 1376 inserts/microsecond), Xeon CPU (up to 267 inserts/microsecond),
and Xeon Phi (up to 173 inserts/microsecond).

Fig. 4.5: Kokkos find performance with key values repeated 1, 2, 4, or 8 times on the Kepler
GPU (up to 4923 finds/microsecond), Xeon CPU (up to 559 finds/microsecond), and Xeon
Phi (up to 272 finds/microsecond).

performance improvements as we increase the number of repeats.

4.4.4. Value Size. Tests experimenting with using values of increasing size are used
to show the ability of these functions to perform well for key-value pairs that have values
that require more memory. We expect the insert tests to run more slowly with larger value
sizes due to the cost of accessing larger amounts of memory, while we expect the find tests
to have similar performance for each value size since they do not require us to access the
value. We perform tests with value sizes ranging from 1 to 32 unsigned integers on each
device.

Figure 4.6 shows the performance of inserting and finding key-value pairs with larger
values on each device. Inserting larger values on the Xeon Phi does not show a noticeable
difference in performance. On the Xeon CPU, we see a slight performance decrease as we
increase the size of the value. On both the Xeon CPU and Xeon Phi we see fairly consistent
performance as we increase the number of keys for all value sizes tested. On the Kepler GPU
however, we see a more significant performance impact as we increase the value size. Larger
value sizes produce a signficiant decrease in performance on the Kepler GPU. In particular
we note that the performance on the Kepler GPU decreases below the performance on both
the Xeon CPU and Xeon Phi as we increase the size of the value and increase the number

P.R. Eller and H.C. Edwards 301

Fig. 4.6: Kokkos insert and find performance for key-value pairs with values ranging from
1 to 32 unsigned integers.

of keys.
Finding larger values did not produce a noticeable difference in performance in almost

all cases. On the Kepler GPU and Xeon CPU we did not see a noticeable difference in
performance as we increased the value size. On the Xeon Phi we also see consistent per-
formance on value sizes from 1 to 16, however once the value size increased to 32 we saw a
decrease in performance.

4.4.5. Key Pattern. We experiment with using sequential, strided, and randomly
shuffled key insert, find, and erase patterns with the unorderd map. These patterns test the
ability of each device to perform well when each thread is using keys that are nearby, far
apart, and randomly selected. We would expect the map to perform better when each thread
is using keys that are far apart. The key pattern that produces this behavior depends on the
device, as each device will map array indices to threads in a different manner. Additionally
testing both the sequential and strided key patterns is more likely to cause conflicts as
multiple threads try to operate on the same or nearby key values. This can demonstrate
that sequential or strided key patterns may be more effective on different devices.

Figure 4.7 shows that on each device, the sequential, strided, and randomly shuffled tests
produced fairly similar performance for each key count. We see slightly worse performance
on the Kepler GPU for inserting randomly shuffled keys on lower key counts. We also see
slightly decreased insert performance on the Xeon Phi for shuffled and strided key patterns.
We see similar patterns for finding keys as we do for inserting keys on the Kepler GPU and
Xeon Phi. However we see more varied performance on lower key counts on the Xeon CPU.

However if we look at the performance for different key patterns with repeats, we see
that the key pattern can make a large difference. Figure 4.8 shows that the sequential insert
pattern outperforms the strided insert pattern for all three devices when we use 8 repeats.
On the Kepler GPU we see that for smaller test sizes both key patterns perform well, but
the strided performance decreases for larger key counts.

302 Thread-Scalable Unordered Map

Fig. 4.7: Kokkos unordered map performance for sequential (Seq), strided (Str), and ran-
domly shuffled (Shuf) key insert and find patterns on the Kepler GPU (up to 446 inserts and
1194 finds per microsecond), Xeon CPU (up to 57 inserts and 281 finds per microsecond),
and Xeon Phi (up to 88 inserts and 209 finds per microsecond).

Fig. 4.8: Kokkos unordered map performance for sequential (Seq), strided (Str), and ran-
domly shuffled (Shuf) key insert patterns with 8 repeats on the Kepler GPU (up to 1376
inserts/microsecond), Xeon CPU (up to 267 inserts/microsecond), and Xeon Phi (up to 173
inserts/microsecond).

P.R. Eller and H.C. Edwards 303

5. Performance Evaluation with Mini-Applications. Next we experiment with
two mini-applications based on real-world applications that unordered maps are commonly
used for. The first mini-application is a non-linear finite element code (FENL) and the
second is a graph generation mini-application. FENL is a mini-application that uses the
finite element method to solve a nonlinear problem with Newton iterations. We focus on the
performance of contructing and filling a sparse linear system using the Kokkos unordered
map.

The second mini-application is a graph generation algorithm from the MultiThreaded
Graph Library. We run tests to randomly generate a R-MAT graph and an Erdos-Renyi
graph. This algorithm is implemented using an unordered map by inserting each generated
edge into the map to ensure that we generate a full set of unique edges.

5.1. Nonlinear Finite Element Mini-Application. We use the nonlinear finite ele-
ment (FENL) mini-application [7] to test our unordered map in a more realistic application.
This mini-application uses the finite element method to solve a nonlinear problem using
Newton iterations. FENL solves the simple scalar nonlinear equation −k∆T + T 2 = 0 on a
3-d box domain. The geometry and boundary conditions are restricted in order to obtain
an analytic solution that we can use to verify correctness. This mini-application uses lin-
ear hexahedral finite elements with 2x2x2 numerical integration with non-affine mapping of
vertices for non-uniform element geometries. The resulting linear system is solved with a
conjugate gradient iterative solver.

We focus on constructing and filling the sparse linear system using the Kokkos unordered
map in order to demonstrate that Kokkos provides a thread safe, thread scalable, performant
unordered map implementation. We evaluate the performance of this map on the Xeon CPU,
Kepler GPU, and Xeon Phi.

Fig. 5.1: Nonlinear Finite Element (FENL) performance for fill node set and fill graph
entries routines using Kokkos unordered map and the total performance for generating an
element graph map.

The main FENL routine constructs a sparse graph from an unordered map. These
routines fill the unordered map with elements, compute the row-offset, allocate the CRS
graph structure, fill the CRS graph, and then sort the column entires in each CRS graph
row. Once the element graph map is constructed, we can create the sparse matrix from
the graph. We can then finish setting the relevant boundary conditions and then perform
nonlinear Newton iterations, using a conjugate gradient iterative solver at each nonlinear
iteration, to reach the solution.

A number of routines are used to construct the sparse graph, but we focus on the two
routines that use the unordered map. The fill map operator fills the unordered map with

304 Thread-Scalable Unordered Map

elements and the fill graph operator then processes the unordered map to generate the CRS
graph entries. These routines do not need to associate a value with the key.

The fill map operator fills the map with elements by looping over row-node and column-
node pairs and inserting locally owned pairs into the unordered map. If the key is successfully
inserted into the map, then we use an atomic fetch add to update the row or column node.
We may have to repeat this routine a second time if the initial capacity was too low as
discussed in section 3.3.

We fill the CSR graph using the unordered map that was generated by the fill map
operator. This routine requires us to iterate over the contents of the unordered map. As
discussed in section 3.1, we treat the unordered map as an array by looping over the contents
of the unordered map and checking if an index is in the unordered map. If the index is valid,
we get the key at that index, compute the offset, and add the node to the list of graph entries.

The FENL mini-application is run multiple times on problem sizes ranging from 25x25x25
(15 thousand) elements to 150x150x150 (3.375 million) elements. The test results for FENL
are shown in figure 5.1. These results show fairly consistent performance per node on the
Kepler GPU and Xeon CPU as we increase the number of finite element nodes. On the Xeon
Phi we see some decreases in performance per node at times, but overall we see performance
improve as we use more finite element nodes. Overall this demonstrates effective perfor-
mance using Kokkos on multiple devices for a realistic nonlinear finite element problem.

5.2. Graph Generation Mini-Application. We use graph mini-applications from
the MultiThreaded Graph Library (MTGL) [5] to test Kokkos. MTGL is a collection of
algorithms and data structures designed to run on shared-memory platforms or on multi-core
systems. The software and API is modeled after the Boost Graph Library, with modifications
to take advantage of shared memory machines.

We adapt part of MTGL to run using Kokkos on many-core architectures. We run
R-MAT and Erdos-Renyi graph generation tests to generate graphs with m unique edges.
Each graph generation test uses the same random graph generation routine but provides a
unique edge generation routine. These graph generation routines may generate the same
edge multiple times, resulting in a collision. These collisions means we need to generate
extra edges to ensure that we have a graph containing m unique edges.

The R-MAT (recursive matrix) graph [6] recursively sub-divides the adjacency matrix of
the graph into four equal-sized partitions and distributes the edges within these partitions
with unequal probabilities. These unequal probabilities make it more likely that certain
edges will be generated multiple times, resulting in a higher likelihood of collisions.

The Erdos-Renyi [12] graph has n vertices and generates two random numbers to select
two vertices and create an edge between them. This results in an algorithm where there
is an equal probability that there will be an edge between any two vertices, resulting in a
smaller likelihood that the same edge will be generated multiple times.

This mini-application is implemented by inserting each edge into an unordered map.
If the insert is successful then we know the edge is unique. We expect the performance of
R-MAT graph generation to be limited by the cost of collisions, especially as the number
of edges increases. We expect the Erdos-Renyi graph to have fewer collisions, allowing the
unordered map to insert edges with a higher success rate and obtain better performance as
we increase the graph size.

The primary MTGL mini-application random graph generation routine attempts to
add edges to the map in phases, calling one device routine to insert many edges at once.
A second series of routines is called once we have less than a full phase of edges to add to
ensure that all edges are added to the map that would be added in serial and keep the graph
deterministic.

P.R. Eller and H.C. Edwards 305

The routine to insert many edges at once generates an edge, performs some simple
checks to verify that the edge is not a duplicate, generates a key, and then attempts to
insert the key into the map. If the key is successfully inserted into the the map, we add the
key to a list of edges, using an atomic fetch add to ensure that we use a unique index. This
routine does not need to associate a value with the key.

The routine to add the remaining edges uses a similar process, but takes extra steps to
ensure that we are adding all of the edges that would have been added in serial in order
to keep the graph deterministic. This requires generating a set of edges for the full phase,
but only adding the first edges generated that are needed to result in m unique edges being
added to the graph. Once we have generated a full list of edges, we can call a routine to
generate the graph.

Fig. 5.2: Kokkos MTGL performance for generating a list of unique edges for a R-MAT
graph (left) and Erdos-Renyi graph (right).

Figure 5.2 shows the performance of Kokkos for each device for the R-MAT and Erdos-
Renyi graph generation mini-applications. We see that for the R-MAT graph generation
routine the performance increases as we increase the number of edges to a point, but then
performance drops off. For the Erdos-Renyi graph generation routine, on the Kepler GPU
the performance increases as we increase the number of edges, while on the Xeon CPU and
Xeon Phi the performance is very consistent for all edge counts. This behavior is expected
as the R-MAT graph has many collisions as we increase the size of the graph. This results
in more failed inserts and requires additional steps to generate and insert m unique edges.
The Erdos-Renyi graph has few collisions, resulting in fewer failed inserts, allowing us to
obtain much better performance as we increase the size of the graph.

6. Conclusions. Kokkos provides a thread-safe, thread-scalable unordered map (a.k.a.,
hash map) container capable of performing well on modern shared-memory many-core ar-
chitectures. This container provides users with insert, delete, and find operations that are
performant when called by thousands of threads at the same time.

While there are many unordered map implementations that have been developed, there
are few implementations available that are both thread-safe and thread-scalable. Only Intel
threaded building blocks provides similar functionality as the Kokkos unordered map. Unlike
other implementations, the Kokkos unordered map is portable, allowing us to run on both
traditional CPUs as well as many-core architectures such as GPUs and Xeon Phis.

Performance tests demonstrate that Kokkos clearly outperforms Intel threaded building
blocks on Xeon Phis. We also see that the Kokkos unordered map is able to maintain high
performance on each architecture when varying parameters such as the capacity and density
of the map, the number of times a particular key value is repeated, the memory size of the

306 Thread-Scalable Unordered Map

value, and the key pattern. Experiments using the Kokkos unordered map with the non-
linear finite element (FENL) and graph generation mini-applications demonstrates that the
Kokkos unordered maps are able to provide good performance on realistic applications on
a variety of architectures.

REFERENCES

[1] Nvidia cuda zone. https://developer.nvidia.com/cuda-zone, Aug. 2015.
[2] D. A. Alcantara, Efficient Hash Tables on the GPU, PhD thesis, University of California, Davis,

2011.
[3] D. A. Alcantara, A. Sharf, F. Abbasinejad, S. Sengupta, M. Mitzenmacher, J. D. Owens,

and N. Amenta, Real-time parallel hashing on the gpu, ACM Transactions on Graphics, (2009),
p. 154:1154:9.

[4] A. Appleby, Murmarhash3. code.google.com/p/smhasher, April 2011.
[5] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, Software and algorithms for graph

queries on multithreaded architectures, Parallel and Distributed Processing Symposium, Interna-
tional, 0 (2007), p. 495.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, R-mat: A recursive model for graph mining, SIAM
Data Mining, (2004).

[7] H. C. Edwards, Minifenl: Fully hybrid parallel and performance portable nonlinear finite element
mini-application using mpi+kokkos, May 2014.

[8] H. C. Edwards and D. Sunderland, Kokkos array performance-portable manycore programming
model, in PMAM, Feb. 2012, pp. 1–10.

[9] H. C. Edwards, D. Sunderland, C. Amsler, and S. Mish, Multicore/gpgpu portable computational
kernels via multidimensional arrays, in Cluster Computing (CLUSTER), 2011 IEEE International
Conference on, IEEE, Sept. 2011, pp. 363–370.

[10] H. C. Edwards, D. Sunderland, V. Porter, C. Amsler, and S. Mish, Manycore performance-
portability: Kokkos multidimensional array library, Scientific Computing, (2012), pp. 89–114.

[11] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Comput-
ing, 74 (2014), pp. 3202–3216.

[12] P. Erdos and A. Renyi, On random graphs. i, Publicationes Mathematicae, 6 (1959), p. 290297.
[13] M. Fomitchev and E. Ruppert, Lock-free linked lists and skip lists, in the twenty-third annual ACM

symposium, New York, New York, USA, 2004, ACM Press, pp. 50–59.
[14] H. Gao, J. F. Groote, and W. H. Hesselink, Lock-free dynamic hash tables with open addressing,

arXiv.org, (2003).
[15] E. Goodman, D. Haglin, C. Scherrer, D. Chavarria-Miranda, J. Mogill, and J. Feo, Hash-

ing strategies for the cray xmt, in Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, April 2010, pp. 1–8.

[16] E. Goodman, M. N. Lemaster, and E. Jimenez, Scalable hashing for shared memory supercomputers,
in Proceedings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, New York, NY, USA, 2011, ACM, pp. 41:1–41:11.

[17] M. Harris, J. Owens, S. Sengupta, Y. Zhang, A. Davidson, R. Patel, and L. Wang, Cuda data
parallel primitives library documentation. http://cudpp.github.io/, 2015.

[18] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit, A Lazy Con-
current List-Based Set Algorithm, in Principles of Distributed . . . , Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006, pp. 3–16.

[19] Intel, Threaded building blocks. https://www.threadingbuildingblocks.org/, 2015.
[20] M. Moazeni and M. Sarrafzadeh, Lock-free hash table on graphics processors, in Proceedings of

the 2012 Symposium on Application Accelerators in High Performance Computing, SAAHPC ’12,
Washington, DC, USA, 2012, IEEE Computer Society, pp. 133–136.

[21] J. Reinders, Intel Threading Building Blocks, O’Reilly & Associates, Inc., Sebastopol, CA, USA,
first ed., 2007.

[22] The OpenMP API Specification for Parallel Programming. openmp.org/, Aug. 2015.

CCR Summer Proceedings 2015 307

CREATING AN AMGX ADAPTER WITHIN THE MueLu PACKAGE

E. FURST∗, A. PROKOPENKO† , AND J. HU‡

Abstract. In the MueLu package, an adapter was created to allow the user to utilize the AmgX library
as a preconditioner and solver in place of MueLu. MueLu is a software package that is part of Trilinos
library implementing algebraic multigrid (AMG) algorithms. AmgX is a collection of linear solvers developed
by NVIDIA that are executed on the GPU. The AmgX adapter was implemented to allow running AmgX
on a single GPU device. A study was conducted to compare the performance of AmgX and MueLu libraries
as preconditioners. Belos, a Trilinos software package implementing iterative linear solvers, was used to
supply an outer iterative linear solver. MueLu was provided an input deck with either AmgX configuration
settings or MueLu parameters. In both cases, the preconditioners were initialized with the matching settings.
The comparison was run using Laplace operators of increasing problem sizes in two and three dimensions.
It was found that on larger problem sizes, AmgX as a preconditioner produced faster times than MueLu.

1. Introduction. The desire to solve increasingly larger problems has made it neces-
sary to find ways to better utilize computing resources. This is often accomplished through
parallel implementations of algorithms and the use of distributed systems. Often, these large
problems take the form of sparse linear systems. Multigrid algorithms are often used for the
solution of these linear systems because of their algorithmic and parallel scalability [4].

In this work, we created an adapter in MueLu to give the user an option to use AmgX,
an algebraic multigrid linear solver library developed by NVIDIA which allows for the so-
lution of linear systems on graphics processing units (GPUs). Our goal was to implement
this adapter so that it could be run both in serial and in parallel using the Message Passing
Interface (MPI). We also wanted to make the adapter easy to use through the use of input
decks. By having the AmgX options specified in an input deck, the adapter can be utilized
with minimal if any changes to user code.

1.1. Multigrid Methods. Multigrid methods approximate the solution to a linear
system through the creation and solution of coarser problems. The solutions to these coarser
problems are combined to help accelerate the approximation of the original, finest problem.
Approximate solvers referred to as pre-smoothers and post-smoothers help to quickly reduce
certain error modes in the approximate solution on each level of the multigrid. Solvers used
in smoothing are typically relaxation methods such as Jacobi or Gauss-Seidel. These relax-
ation methods are effective up until a point when only certain error modes remain. At this
point the errors are called smooth, and it is beneficial to move to a coarser grid where these
error modes appear differently and the relaxation method can be more effective. In order to
move between levels interpolation and restriction operators are chosen. Interpolation matri-
ces transfer solutions from coarse to fine levels, and restriction matrices restrict a residual
from a fine level to a coarser level. Both MueLu and AmgX implement algebraic multigrid
(AMG) methods, where these matrices are automatically generated. Thus, the hierarchy
of grids in AMG is derived directly from the finest level using graph algorithms. Multi-
grid algorithms utilize various cycles to move from finer to coarser levels. For instance, a
V-cycle involves one coarse grid correction step, and a W-cycle involves two coarse grid cor-
rection steps between the pre-smoother and the post-smoother. For a more comprehensive
background on multigrid, see [4].

1.2. MueLu. The MueLu package is an algebraic multigrid library that exists within
the Trilinos project. It provides a framework for the solution of large sparse linear systems

∗College of Saint Benedict/University of Washington, eafurst@cs.washington.edu
†Sandia National Laboratories, aprokop@sandia.gov
‡Sandia National Laboratories, jhu@sandia.gov

308 AmgX Adapter

using parallel multigrid preconditioning. MueLu is designed to be portable and efficient
on many different architectures and relies upon the “MPI+X” paradigm where “X” can be
threading or CUDA. MueLu can then exploit both distributed-memory parallelism and any
of the various shared-memory parallel programming models.

This is accomplished through the use of the common interface of Kokkos, an imple-
mentation of a programming model for writing performance portable applications. Versa-
tility is also a goal of the MueLu package, aiming to allow for the easy reuse and adapt-
ability of algorithms to different problems. MueLu provides several multigrid algorithms
including smoothed aggregation AMG [14], Petrov-Galerkin aggregation AMG [13], and
energy-minimizing AMG [11]. MueLu gives users run-time control over the algorithms and
parameters that it uses, through an XML or ParameterList input deck. MueLu can
be used as a standalone multigrid solver or can be used as a multigrid preconditioner with
Belos or AztecOO as a solver [12, 5].

MueLu uses several different Trilinos packages including Tpetra, Ifpack2, Belos,
and Teuchos. Belos is a collection of standard iterative linear solvers and also contains
flexible variants of CG and GMRES. It provides a linear solver developer framework and
provides next-generation iterative linear solvers [3]. Tpetra is a package which implements
linear algebra objects such as matrices and vectors. Tpetra is one of a few packages in
Trilinos which implement linear algebra objects. Specifically, Tpetra is templated allowing
objects to contain many different kinds of data including complex-valued types or floating-
point types of varying precision. Also, because Tpetra uses Kokkos, Tpetra objects
are easily portable to new and different computer architectures. Further, Tpetra supports
“MPI+X” parallelism and distributed data [9]. The Teuchos package provides a set of
common tools for Trilinos developers including reference counted pointers (RCPs), param-
eter lists, and XML parsers. Ifpack2 provides operators which can be used for multiple
purposes including as preconditioners in iterative solvers or as smoothers for AMG. These
operators include incomplete factorizations and relaxations [8].

2. AmgX: NVIDIA’s Multigrid Linear Solver API. AmgX is a collection of
multigrid linear solvers developed by NVIDIA. Various iterative linear solvers are imple-
mented including BiCGStab, CG, GMRES, FGMRES, and Flexible CG. In addition, both
classical algebraic multigrid and aggregation multigrid are implemented. Further, block Ja-
cobi, multicolor Gauss-Seidel, multicolor DILU, multicolor ILU, and polynomial smoothers
are implemented [10] These solvers run on the GPU and currently can be run MPI sequen-
tially, utilizing one GPU device, or in MPI parallel, utilizing multiple devices. However, in
this paper, we focus on the MPI serial usage. In addition, AmgX does support OpenMP
applications, but it treats these applications as though they were single threaded applica-
tions and requires a master thread to be specified by the application for all communication
with AmgX.

The AmgX API contains five core types of objects: Config, Resources, Solver, Matrix,
and Vector. The Config object holds various parameter strings that correspond to the set-
tings for the Resources and Solver objects. Settings for the Config object can be stored
in a text file and uploaded or specified in a string. The configuration files contain a series
of key-value pairs which specify various parameters and algorithms and is stored using the
JSON file type. The Resources object contains information relevant to the resources that
will be used by the AmgX library including information about GPUs and when running in
parallel, information about the MPI communicator being used. The Solver object is created
for the execution of algorithms to solve a linear system. AmgX allows for many different
combinations of the algebraic multigrid methods and iterative linear solvers mentioned pre-
viously. The Matrix and Vector objects represent the sparse linear system to be solved and

E. Furst, A. Prokopenko, and J. Hu 309

can be stored either on the host or device. The Matrix and Vector elements can be either
doubles or floats, and indices must be 32-bit integers. AmgX supports various matrix types
and layouts including block matrices and distributed storage of matrices. However, AmgX
only supports square matrices [10].

3. The AmgX Adapter. The AmgX adapter is currently only compatible with Tpe-
tra objects. An AmgX solver object will be created if a Tpetra::CrsMatrix (Com-
pressed Row Storage Matrix) is passed in along with AmgX configuration settings to the
method

CreateTpetraPreconditioner(
const Teuchos::RCP<Tpetra::CrsMatrix<SC,LO,GO,NO> >& A,
Teuchos::ParameterList& params,
const Teuchos::RCP<Tpetra::MultiVector<SC,LO,GO,NO> >& coords,
const Teuchos::RCP<Tpetra::MultiVector<SC, LO, GO, NO> >& nullspace

);

. Tpetra objects take four template parameters, a scalar type (SC), a local ordinal type
(LO), a global ordinal type (GO), and a node type (NO). Further, an RCP is a reference-
counting, automatically deallocating pointer comparable to
std::shared ptr.

The constructor for the AmgX Adapter will then be called if Trilinos is installed with
AmgX as a third party library. Trilinos can be configured with AmgX as a TPL by
adding the following lines to a cmake configure script:

-D Trilinos_ENABLE_AmgX:BOOL=ON
-D AmgX_LIBRARY_DIRS:PATH="<path_to_amgx>/lib"
-D AmgX_INCLUDE_DIRS:PATH="<path_to_amgx>/include"
-D MueLu_ENABLE_Experimental:BOOL=ON
-D MueLu_ENABLE_AmgX:BOOL=ON

A user can pass in the AmgX configuration settings in two ways, either by passing
in the name of a JSON file or by creating a sublist with AmgX configuration parame-
ters. Either way, a sublist called “amgx:params” is created in the parameter list that
is passed into CreateTpetraPreconditioner, and either “json file” is set or specific
AmgX parameters are added to the sublist and set. The user must also specify “use external
multigrid package” to be “amgx” in this parameter list. If this is set in the parameter list,
CreateTpetraPreconditioner calls the AMGXOperator constructor:

AMGXOperator(
const Teuchos::RCP<Tpetra::CrsMatrix<SC,LO,GO,NO> > &A,
Teuchos::ParameterList ¶ms

);

This constructor initializes the AmgX library and creates the configuration, resources,
solver, matrix, and vector objects. Either the JSON file will be used to create the configu-
ration object, or the “amgx:params” sublist will be converted into a single string to be used
to create the object. In serial, three arrays are extracted from the Tpetra Matrix: column in-
dices, row pointers, and data. These arrays are then passed into AMGX matrix upload all
along with the number of rows, block size, and number of nonzeros. The vectors are created
using the resources object but the actual data for the vectors is not uploaded until the
call to the apply method. A user can then solve a linear system by passing in right hand
side and solution as Tpetra::MultiVector to the apply method. The vector data will

310 AmgX Adapter

be uploaded to the AmgX vector objects and the linear system will then be solved using
AmgX.

A unit test was added to the MueLu tests to ensure the AmgX adapter was working
correctly. This tested AmgX on a two dimensional Laplacian matrix. The test checked that
the AmgX matrix that was created was the correct size and that AmgX converged before
the maximum number of iterations was reached. A JSON file with configuration settings
was created and passed in to the unit test. The settings specified a V-cycle, preconditioned
CG as the outer solver, block Jacobi as a smoother, and the direct coarse solver.

Further, in order to be able to use AmgX as a preconditioner with a Belos outer solver,
the BelosMueLuAdapter was modified. The BelosMueLuAdapter takes a MueLu hi-
erarchy object and turns it into a Belos object. This object can then be used as a pre-
conditioner with a Belos solver object. The BelosMueLuAdapter was modified so that
AMGXOperator objects could also be converted into Belos objects and used as precondi-
tioners. A constructor that accepts an AMGXOperator object as a parameter was added.
Further, the apply method was modified to check whether the BelosMueLuAdapter was
initialized with a MueLu hierarchy or AMGXOperator and to then call the appropriate
iterate or apply method.

4. Experimental Setup. Both two- and three-dimensional Laplacian matrices of var-
ious sizes were used to test the AmgX adapter. A right hand side equal to identity was
chosen in each case, and the initial guess for the solution vector was randomized using a
seed to ensure reproducibility. A performance comparison between standalone MueLu and
MueLu using the AmgX adapter was conducted. Increasing matrix sizes were tested for
this comparison. AmgX was set to run size 4 aggregation for 2D examples and size 8 ag-
gregation for 3D. MueLu was set to run 2× 2 brick aggregation for 2D and 2× 2× 2 brick
aggregation for 3D. Two configuration settings were used for the experiments. One setting
used a single level multigrid hierarchy with Jacobi as a coarse solver. The other was set
to use a Jacobi smoother with an exact solver on the coarse level. In this case, we wanted
the coarsest level to have around 1000 rows. Because MueLu and AmgX do not have a
comparable parameter to set this, min coarse rows was set to 500 in AmgX and coarse:
max size was set to 1000 in MueLu. By setting the parameters in this way, MueLu and
AmgX tended to produce the same number of multigrid levels on each problem size. The
multigrid was set to run a V-cycle. All other parameters were set to the AmgX defaults. For
the comparison between standalone MueLu and the adapter, a MueLu driver was given
an input deck comparable to the settings passed in to AmgX. Belos was used in order to
run CG as the outer iterative solver in both cases.
Remark. In our experiments,it took about 10 seconds for the AmgX library to initialize
all its resources. This initialization could have been done at the program initialization, and
thus we did not include this time in our timings comparisons between AmgX and MueLu.

Tests were run on the Shannon testbed. Shannon has Intel E5-2670 CPUs and various
GPU devices. Tests were run on the “stella” queue of Shannon which has two K80 NVIDIA
cards. CUDA version 6.5.14 was used with AmgX version 1.2.0 built on December 22, 2014.

5. Results.

5.1. A Comparison of MueLu and AmgX. The following are results from the
comparison study briefly outlined in Section 4. In order to compare performance, the same
parameters were used between the AmgX adapter and standalone MueLu. The Belos
implementation of CG was used for the outer iterative linear solver in both cases. In all
tables, time is measured in seconds. The setup time is either the time for the MueLu
hierarchy to set up or the time for AmgX to set up the solver object once all data has been

E. Furst, A. Prokopenko, and J. Hu 311

Rows AmgX MueLu

Setup Solve Total Iters Setup Solve Total Iters

10000 0.0002 0.121 0.122 137 0.005 0.054 0.059 137

Table 5.1: Time results and number of iterations for comparison solving a 9-point Laplacian
with 10000 rows. Both AmgX and MueLu were restricted to one multigrid level and a
polynomial smoother was set to perform the coarse solve with the tolerance set to 10−6.

Rows AmgX MueLu

Setup Solve Total Iters Setup Solve Total Iters

10000 0.026 0.048 0.071 19 0.052 0.024 0.076 14
40000 0.087 0.122 0.204 21 0.206 0.103 0.309 21

160000 0.096 0.388 0.483 32 0.745 0.534 1.379 31
640000 0.118 1.811 2.010 49 3.214 2.828 6.042 45

2560000 0.263 9.900 10.300 78 16.100 16.710 32.810 65

Table 5.2: Time and iteration results for comparison solving a 9-point Laplacian using
polynomial smoother and direct coarse solve with tolerance set to 10−6.

uploaded to the device. Solve time is the time that Belos took to converge and total is the
setup time added to the solve time.

Table 5.1 shows the results from restricting both MueLu and AmgX to one multigrid
level. Further, Jacobi was set as the coarse solver with a relaxation factor of 0.9 and Belos
CG as the outer iterative solver. The tolerance was set to 10−6 and the matrix was a 9-point
Laplacian with 10000 rows. 2 × 2 brick aggregation was chosen for MueLu and block size
4 aggregation was specified for AmgX. Because AmgX and MueLu produced the same
number of iterations with these settings, it can be confirmed that AmgX is behaving as
expected.

Table 5.2 shows the results from a scaling study done on 9-point Laplacian matrices. In
this case, Jacobi was chosen as a smoother with a relaxation factor of 0.9 and a direct coarse
solver was specified in both MueLu and AmgX. As mentioned previously, the multigrid
was set so that the coarsest level would have around 1000 rows, and a V cycle was chosen.
Again, Belos CG was chosen as the outer iterative method, and the tolerance was set to
10−6. Also, block size 4 aggregation was chosen for AmgX and 2× 2 brick aggregation was
set for MueLu. The table include setup, solve, and total times for MueLu and AmgX as
well as the number of iterations taken to converge in each case. It can be seen that despite
taking more iterations to converge, AmgX did converge faster than MueLu on the three
largest problem sizes. It can also be noted that the number of iterations remained fairly
similar on all problem sizes for AmgX and MueLu. Further, the total time for AmgX was
less than the total time for MueLu on all problem sizes.

Figure 5.1 shows the number of iterations and solution times for MueLu and AmgX
as listed in Table 5.2. One can see that the total time for MueLu to complete increases
faster than AmgX as the problem sizes grew. One can also see that the number of iterations
were between AmgX and MueLu is pretty close. However, AmgX did tend to take more
iterations than MueLu to converge.

312 AmgX Adapter

Fig. 5.1: Number of iterations (left) and total time (right) for 9-point 2D Laplacian matrices
with Jacobi as smoother with direct coarse solver.

Rows AmgX MueLu

Setup Solve Total Iters Setup Solve Total Iters

10000 0.024 0.048 0.072 22 0.041 0.017 0.067 14
40000 0.090 0.128 0.218 24 0.160 0.074 0.234 22

160000 0.085 0.383 0.467 37 0.723 0.414 1.140 32
640000 0.110 1.690 1.800 56 3.760 2.360 6.120 47

2560000 0.194 9.050 9.240 87 16.100 13.800 29.900 68

Table 5.3: Time and iteration results for comparison solving a 2D Laplacian using Jacobi
smoother and direct coarse solve with tolerance set to 10−6.

Table 5.3 shows the results from running a scaling study on 2D Laplacian matrices.
Here it can be seen that in most cases the setup and solve times for AmgX were less than
those for MueLu. Aside from the different matrix, the configuration settings for this scaling
study were the same as those described for Table 5.2.

Figure 5.2 shows the number of iterations and the total times for the scaling study run
on 2D Laplacian matrices (Table 5.3). The plot shows that the total times for MueLu
increased much faster than the total times for AmgX. Again, a similar number of iterations
was seen between MueLu and AmgX on most problem sizes.

Table 5.4 displays the results from running a scaling study on 3D Laplacian matrices.
Again, the configuration settings were the same as those in Table 5.2. However, instead of
size 4 aggregation, size 8 was used for AmgX, and 2× 2× 2 brick aggregation was used for
MueLu. In this case, the solve times remained fairly similar between AmgX and MueLu.
However, as problem sizes increased, MueLu setup times increased more rapidly than those
for AmgX.

Figure 5.3 shows the number of iterations and the total times from Table 5.4. Very
similar trends are seen here as were noted in Figures 5.1 and 5.2. Here, AmgX tended to
need quite a few more iterations than MueLu to converge.

E. Furst, A. Prokopenko, and J. Hu 313

Fig. 5.2: Number of iterations (left) and total time (right) to setup and solve a 2D Laplacian
using Jacobi smoothing and direct coarse solver.

Rows AmgX MueLu

Setup Solve Total Iters Setup Solve Total Iters

8000 0.041 0.041 0.235 16 0.030 0.015 0.045 10
64000 0.046 0.117 0.312 22 0.234 0.073 0.308 14

512000 0.087 0.895 1.090 34 2.220 0.860 3.080 21
4096000 0.302 9.120 9.310 51 26.500 9.530 36.000 31

Table 5.4: Time and iteration results for comparison solving a 3D Laplacian using Jacobi
smoother and direct coarse solve with tolerance set to 10−6.

Fig. 5.3: Number of iterations (left) and total time to setup and solve (right) to converge
for a 3D Laplacian using Jacobi smoothing and direct coarse solver.

314 AmgX Adapter

6. Conclusions. In this work we created an adapter to AmgX inside of MueLu. The
adapter allowed for serial use with AmgX and allowed AmgX to be used as a preconditioner
and solver or as a preconditioner with Belos for the outer iterative method. From a scaling
study it was shown that AmgX and MueLu as preconditioners resulted in a comparable
number of iterations to converge with Belos as the outer iterative method. Further, it
was seen that on larger problem sizes, AmgX resulted in faster setup and solve times, and
demonstrated better scalability.

7. Future Work. An immediate area of future work would be to modify the adapter
to allow for MPI parallel usage. While the adapter currently can be run in serial utilizing one
device or GPU, AmgX requires quite a bit more information to allow for MPI parallelism.
We were able to extract the necessary information from the Tpetra objects, but AmgX
requires a packed local matrix for the call to AMGX matrix upload all. However, AmgX
requires that the rows belonging to each process be reordered. For instance, on a certain
process, AmgX requires that column indices be reordered in such a way that global diagonal
elements come first. Following the diagonal elements, the remaining column indices must
be ordered based on which neighboring process they belong to. After this reordering, the
rows must be ordered in such a way that rows with no connections to neighbors come first.
In addition to these reordering steps, a new mapping from local to global is needed to keep
track of how the rows are now ordered. Because the rows of Tpetra matrices can be
in arbitrary order, the adapter would need to convert the matrix into this packed format
required by AmgX and ultimately store it twice creating a large amount of overhead in
order to successfully utilize MPI parallelism with AmgX.

Next steps for the AmgX adapter include making the adapter compatible with Epetra
objects. Currently there are methods to create MueLu preconditioners for both Epetra
and Tpetra objects, and ideally, in the future, a user would be able to call either one of
these functions with AmgX configuration parameters and invoke the AmgX adapter.

Further, we would like to create a FENL (Finite Element Nonlinear Solver) example
using the AmgX adapter. Essentially, the goal would be to accomplish assembly, precondi-
tioner setup, and solve entirely on the GPU. The examples and tests in this paper involved
problem assembly on the CPU followed by a call to upload the data to the GPU before
preconditioning on the device and solving on the CPU.

A. AmgX Configuration Files. The following is a MueLu input deck which would
create an AmgX adapter object.

<ParameterList name="MueLu">
<Parameter name="verbosity" type="string" value="high"/>
<Parameter name="use external multigrid package" type="string" value="

amgx"/>
<ParameterList name="amgx:params">
<Parameter name="json file" type="string" value="laplace2d.

json"/>
</ParameterList>

</ParameterList>

The below listing is an AmgX configuration file. It sets up a Jacobi smoother with a
direct coarse solver and size 4 aggregation.

{
"config_version": 2,
"solver": {

"solver" : "AMG",

E. Furst, A. Prokopenko, and J. Hu 315

"cycle" : "V",
"algorithm" : "AGGREGATION",
"selector" : "SIZE_4",
"max_iters" : 1,
"min_coarse_rows" : 500,
"smoother" : {

"solver" : "BLOCK_JACOBI",
"relaxation_factor" : 0.9,
"monitor_residual" : 1,
"scope" : "jacobi"

},
"presweeps" : 1,
"postsweeps" : 1,
"print_grid_stats" : 1,
"monitor_residual" : 1,
"scope" : "amg",
"print_config" : 1,

}
}

B. MueLu Input Deck. The following is an input deck used to run MueLu examples.
The XML file contains configuration settings for 2 × 2 brick aggregation, a Chebyshev
smoother, and a direct solver.

<ParameterList name="MueLu">
<Parameter name="verbosity" type="string" jvalue="high"/>
<Parameter name="number of equations" type="int" value="1"/>
<Parameter name="max levels" type="int" value="10"/>
<Parameter name="coarse: max size" type="int" value="1000"/>
<Parameter name="multigrid algorithm" type="string" value="unsmoothed"/>
<Parameter name="aggregation: type" type="string" value="brick"/>
<Parameter name="aggregation: brick x size" type="int" value="2"/>
<Parameter name="aggregation: brick y size" type="int" value="2"/>
<Parameter name="aggregation: brick z size" type="int" value="1"/>
<Parameter name="smoother: type" type="string" value="RELAXATION"/>
<ParameterList name="smoother: params">
<Parameter name="relaxation: type" type="string" value="Jacobi"/>
<Parameter name="relaxation: damping factor" type="double" value="0.9"

/>
<Parameter name="relaxation: sweeps" type="int" value="1"/>

</ParameterList>
</ParameterList>

REFERENCES

[1] Trilinos project web site. http://trilinos.org, 2015.
[2] C. G. Baker and M. A. Heroux, Tpetra, and the use of generic programming in scientific computing,

Scientific Programming, 20 (2012), pp. 115–128.
[3] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, Amesos2 and Belos: Direct and

iterative solvers for large sparse linear systems, Scientific Programming, 20 (2012), pp. 241–255.
[4] W. L. Briggs, S. F. McCormick, and V. E. Henson, A multigrid tutorial, SIAM, 2nd ed., 2000.
[5] J. Gaidamour, J. Hu, C. Siefert, and R. Tuminaro, Design considerations for a flexible multigrid

preconditioning library, Scientific Programming, 20 (2012), pp. 223–239.

http://trilinos.org

316 AmgX Adapter

[6] M. Heroux, R. Bartlett, V. Howle, R. Hoekstra, J. Hu, T. Kolda, R. Lehoucq, K. Long,
R. Pawlowski, E. Phipps, A. Salinger, H. Thornquist, R. Tuminaro, J. Willenbring,
A. Williams, and K. Stanley, An overview of the Trilinos package, ACM Trans. Math. Softw.,
31 (2005).

[7] M. A. Heroux and J. M. Willenbring, A new overview of the Trilinos project, Scientific Program-
ming, 20 (2012), pp. 83–88.

[8] M. F. Hoemmen, J. J. Hu, and C. S. Siefert, Ifpack2: incomplete factorizations, relaxations, and
domain decomposition library. http://trilinos.org/packages/ifpack2, 2014.

[9] M. F. Hoemmen, C. Trott, and M. A. Heroux, Tpetra: Next-generation distributed linear algebra.
http://trilinos.org/packages/tpetra, 2014.

[10] NVIDIA, AmgX Reference Manual: API Version 2, 2014.
[11] L. Olson, J. Schroder, and R. Tuminaro, A general interpolation stategy for algebraic multigrid

using energy minimization, SIAM Journal on Scientific Computing, 33 (2011), pp. 966 – 991.
[12] A. Prokopenko, J. J. Hu, T. A. Wiesner, C. M. Siefert, and R. S. Tuminaro, MueLu users guide

1.0, Tech. Rep. SAND2014-18874, Sandia National Labs, 2014.
[13] M. Sala and R. S. Tuminaro, A new Petrov-Galerkin smoothed aggregation preconditioner for non-

symmetric linear systems, SIAM Journal on Scientific Computing, 31 (2008), pp. 143–166.
[14] P. Vaněk, J. Mandel, and M. Brezina, Algebraic multigrid based on smoothed aggregation for second

and fourth order problems, Computing, 56 (1996), pp. 179 – 196.

http://trilinos.org/packages/ifpack2
http://trilinos.org/packages/tpetra

CCR Summer Proceedings 2015 317

A TESTING FRAMEWORK FOR A HYBRID TRIANGULAR SOLVER

WILLIAM B. HELD∗ AND ANDREW M. BRADLEY†

Abstract. When developing new software solutions, rigorous performance and correctness testing helps
to produce a quality production code. This paper outlines the functionality of a framework for testing the
new research multithreaded sparse triangular solver HTS against a large set of matrices.

1. Introduction. The goal for this project was to create a testing framework which
would allow for performance and correctness testing of HTS on full solves on matrices from
the University of Florida’s test set [2].

HTS is a prototype threaded triangular solver. It has three phases: an expensive sym-
bolic analysis, a fast numerical phase, and a fast solve phase. The symbolic analysis is
run once for a fixed graph. HTS is effective when a problem requires solving in sequence
many triangular systems having the same matrix T or a sequence of matrices Ti sharing
a common nonzero pattern. HTS decomposes T into three parts: a level-scheduled (LS)
triangle, a large matrix-vector product (MVP) block that scatters the (LS) solution, and a
data-parallel (DP) triangle. This decomposition tends to make the DP triangle substantially
denser than the original matrix. Threaded algorithms are implemented for each of these
three blocks. HTS exposes parameters, but its default parameter values were used in this
study.

Performance tests are important for two reasons when looking at the applications of a
triangular solver. The variety of the University of Florida test matrices provides a large
sampling of problems to help determine what types of problems show good performance
with the algorithm and which problems contain interesting issues which cause the software
to struggle, or on which the solver is incorrect. This data can lead to bugfixes or simply give
insight into what the software is good at. Secondly, timing full solves using HTS provides a
good test of how well the software reduces the bottleneck of a triangular solve when included
in a larger mathematical operation.

To achieve this goal the framework has five fundamental steps. Initially, the University
of Florida matrices were limited to matrices that would be possible and useful to test upon.
In order for a triangular solver to be used to perform full solves the matrix A is put through
LUPQR factorization. Then, the full solves are performed and timed using HTS as the
operator. HTS is compared to Intel’s Math Kernel Library (MKL)[1] on the same problems
to give the user a point of reference for performance numbers. Finally, the output from the
timings is parsed and used to create meaningful figures which could be used in a research
paper or presentation.

2. Framework Structure.

Creating Candidate list. While the goal was to test HTS against the University of
Florida matrices, many of these matrices were not used in testing for two fundamental rea-
sons. They were either not big enough to be worthwhile for testing or they were numerically
singular. To trim the list down to only those which were suitable for testing, the entire
University of Florida test matrices were passed through a bash script of Matlab functions
which first eliminates insignificant matrices and then eliminates matrices which cannot be
prepped for triangular solves.

∗Albuquerque Academy; New York University Abu Dhabi, wbh230@nyu.edu
†Sandia National Laboratories, ambradl@sandia.gov

318 Testing Framework for HTS

Using the UFget library in Matlab, the index provided by the University of Florida
for the matrices is accessed. This data is used to trim off those matrices that are too
small (≤ 1000 rows) to have any meaningful improvements through threading and to check
whether the matrices are structurally full rank. This eliminates the meaningless matrices
and the impossible matrices which can be eliminated purely from the index values. Then,
that list is taken and begins factorizing each matrix into factors of L (Lower Triangular), U
(Upper Triangular), P (Row Permutation Matrix), Q (Column Permutation Matrix), and
R (Diagonal Scaling Matrix) from the UMFPACK lu function within Matlab while under
limits for RAM and runtime. Those UMFPACK factors are such that L∗U = P ∗(R\A)∗Q.
This can be substituted for A in the equation A ∗ ~x = ~b. This allows the equation to be
solved as two triangular solves for the forward and backward substitution steps.

The RAM limit eliminates those matrices which have too large of a fill factor to be stored
on the machine and the runtime eliminates those problems for which LU factorization is too
great of a workload. These limits are placed on Matlab from the Bash wrapper using the
Unix command ulimit which provides easy access to resource management for a particular
Bash window. It also allows for easy modifications of the memory and time limits for the
script for different machines. If the while loop for the factorization is performed internally
in Matlab a time limit cannot be set as the entire Matlab process will be considered one
bash process. Therefore, each factorization is opened as an individual Matlab instance as
shown in 2.1.

ulimit -S -v 4000000
ulimit -S -m 4000000
ulimit -S -t 20
i=1
while 1; do

matlab -nodisplay -nodesktop -r
"addpath(‘/home/wbheld/Documents/MATLAB/UFget’, ‘/home/wbheld/wbheldCompton’);
C = load(‘FinalCandidates.txt’); load(‘Second_Round.m’, ‘-mat’);
try gts_setupMOD(’correctness_prep’, C($i)); F($i) = C($i);
end; save(‘Second_Round.m’, ‘F’); quit"

i=$(($i+1))
done

Fig. 2.1: Bash Wrapper

The candidates that are successfully factorized are converted into CRS format to be
used as inputs in C++. Additionally, a dense set of vectors of the same size as the original
matrix is generated randomly to be used as solution vectors in the equation A~x = ~b. One of
these vectors will be used in performance testing and either one or three of the vectors will
be used in correctness testing. A baseline for error is established using the Matlab backslash
function (~xtrue = A\~b). Each of these values is stored into a data file which will be input
into the C++ performance testing.

Performance testing. The performance tests themselves are the core of the frame-
work. The framework outputs time per solve, speedup as compared to the baseline, time
for symbolic analysis, time for numerical processing, and the relative error of the solve in a
chart along with key statistics about the matrix itself and how the problem was compiled
in this instance. The goal with this output is to provide all data needed for performance
statistics or troubleshooting errors originating from compilation or matrix conditions.

First, the data file is read with the L and U factors being stored as CRS (Compressed
Row Storage) matrices while ~b and ~xtrue are stored as C++ standard vectors. The data for
compiling options, as well as the University of Florida index number, is recorded in order to
preserve the options which created the outputs. The number of non-zeros within the Lower

W.B. Held and A.M. Bradley 319

and Upper triangular factors are recorded as well, since those cannot be retrieved from the
University of Florida index based off of the index number.

A baseline for performance is set up based off of one of two basic triangular solvers,
either a basic serial solve or Intel’s Math Kernel Library sparse triangular solve. A serial
full solve is performed to create a baseline for speedup.1. For a more accurate comparison
of speedup in a scientific computing environment, the problem is run through Intel’s Math
Kernel library as a baseline of expected performance for a threaded commercial triangular
solver.2 These baseline solves have their relative error and times per solve recorded. If
MKL is used than the speed of MKL serves as the factor of 1 for speedup, otherwise the
hand-coded serial solve will be used to ensure that the testing framework performs even
upon a basic consumer computer.

After the baseline has been set, whether it is the serial solve or MKL, the problem is
run with HTS. Both the Upper and Lower triangles go through symbolic analysis and that
symbolic analysis is timed. Then, the output goes through the numerical phase which is
kept as a separate timing. It is important to note that the symbolic analysis and numerical
phase are not taken into account in the calculations of speedup. This means that one must
always consider how many solves will be performed for the speedup to be worth the cost of
the symbolic and numerical analysis.

The last timing is that of the actual algorithm. HTS is given the outputs from the
analysis phase along with the original permutation and scaling vectors. HTS’s solve is then
compared to the baseline solve to generate the speedup value. This process is repeated for
a subset of 1 to 32 threads on a 16 core Sandy Bridge CPU, 1 to 40 threads on a 20 core
Ivy Bridge CPU, and 1 to 228 threads on an Intel Xeon Phi MIC. The performance may
not see significant improvement once hyperthreading on the CPU is activated; however, the
performance is checked in order to confirm that hyperthreading does not degrade perfor-
mance substantially. This series of tests records the thread count, time per solve, speedup,
and relative error.

> 236
USE_MKL USE_SERIAL_SPARSE USE_DENSE_ROWS SORT_BLOCKS USE_P2P
min_block_size 64 serial_block_size 64 max_level_set_bottlenecks 1073741824 min_dense_density 0.75
ls_blk_sz 1 min_lset_size 10 min_lset_size_scale_with_nthreads 0 profile 0
nrhs 1 nnzL 3322821 nnzU 3390972
n 3140 |lsis| 450 |dpis| 2690
n 3140 |lsis| 544 |dpis| 2596
thr sec/solve speedup prepr/s| repr/s|| relerr solver
-1 1.380e-02 0.67 0.00 0.00 3.62e-12 sfs
0 9.303e-03 1.00 0.00 0.00 3.52e-12 mkl
1 5.581e-03 1.67 24.13 9.81 3.87e-12 gts
2 2.918e-03 3.19 18.91 10.31 3.41e-12 gts
4 1.941e-03 4.79 16.87 8.54 3.37e-12 gts
8 1.659e-03 5.61 16.56 6.22 3.33e-12 gts

12 1.708e-03 5.45 16.62 5.86 3.55e-12 gts
16 1.723e-03 5.40 16.84 5.45 3.56e-12 gts
24 1.896e-03 4.91 17.48 5.00 3.61e-12 gts
32 1.943e-03 4.79 22.37 5.70 3.44e-12 gts
<

Fig. 2.2: Sample Output

With all of the appropriate data recorded, the testing framework outputs the data in
the format shown in 2.2. In the output, the times for symbolic and numerical analysis

1If the GCC compile instructions at the top of the file are used, then a hand-coded serial solver will be
the baseline for speedup throughout.

2For more final testing and use of MKL, Intel compilers should be used as opposed to GCC.

320 Testing Framework for HTS

are transformed to quantities which are more convenient for analysis. Symbolic analysis
is compared to the time it takes to perform a serial solve while the numerical analysis is
compared to the time it takes to perform a parallel solve.

Parsing. Performance tests are scripted in batches, with the outputs stored in a text
document whose title tells the user the date the tests were run, the machine they were run
on, and the range of University of Florida index values for that particular batch. While
such a text document contains all the data needed for a thorough analysis, the data is of
little use within that format and it is necessary to read through the data in order to have
presentable results. The parser, which processes the data, was written within Matlab for
ease of transition directly into graph creation once the data is stored.

The parser begins reading data when it comes across the symbol ‘>’. This allows the
user to input their own notes into the record without breaking the parser. Each variable is
stored within a structure which contains data for a certain run. This structure can then be
used as the access point for an entire performance testing batch rather than accessing each
variable separately.

The parser stores the index number which will be used to draw additional data from
the index. The name of the matrix is drawn from the UFget index so that performance can
more easily be associated with the application matter of a particular problem and in case
the index numbers change in future iterations of the University of Florida set. All compiling
options are stored in case they are needed to isolate a bug. The number of non-zeros from
the original matrix is pulled from the index. The size of the matrix is drawn from the mark
‘N’. The number of non-zeros for both the Lower and Upper triangular factors are pulled
from the marks ‘nnzL’ and ‘nnzU’. These 3 records will be the key graphical comparisons for
performance as they are the most numerically significant comparisons for speedup. Every
section from the chart is then recorded as an individual variable in the structure. The parser
knows to move to the next matrix when it comes across the symbol ‘<’.

Graph Creation. While the parsed data is usable for calculations in the Matlab for-
mat, it would be meaningless in a presentation without copious amounts of explanation.
Therefore, graphing is necessary to make the data easily memorable and meaningful to the
viewer whether in a written report or a presentation. For this framework, speedup compared
to number of non-zeros and total size of the matrix were graphed in order to analyze how
dependent on size and sparsity the algorithm is. Even with a quick glance this gives the
reader an idea of how well HTS performs in the most general terms, with deeper analysis
still available stored in the Matlab structure.

Examples of analysis of the subset of the University of Florida matrix collection we
have assembled are shown in 2.3 and 2.4. 2.3 shows the speedup relative to MKL’s serial
triangular solver on a 20-core, 2-hyperthread CPU for 10 and 40 threads (y-axis) as it relates
to the size of the matrix and number of non-zeros in the matrix factors (x-axis). For very
small matrices and some large ones, speedup is below 1. 2.4 shows speedup on the Intel
Knights Corner MIC compared to the same statistics. On this architectur and with the
OpenMP settings used, 56 threads corresponds to using one quarter of the cores, and 228
threads corresponds to using all cores. These comparisons allow for quick analysis of an
extremely large data set over two architectures and allows for much more general trends
to be checked. It is important to note that the purpose of this report is to describe and
evaluate a test framework, not yet to evaluate HTS. For that reason, the set of tests shown
in 2.3 and 2.4 is dominant in problems that are smaller than those of primary interest to
HTS, and has only a subset of the UF collection of particular interest.

W.B. Held and A.M. Bradley 321

of Matrix Rows

10 3 10 4 10 5

S
p

e
e

d
u

p
 o

v
e

r
m

k
l_

c
s
p

b
la

s
_

d
c
s
rt

rs
v

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
Complete factorization on Morgan Ivy Bridge (819 matrices)

10 threads

40 threads

nnz(L) + nnz(U)

10 4 10 5 10 6 10 7 10 8

S
p

e
e

d
u

p
 o

v
e

r
m

k
l_

c
s
p

b
la

s
_

d
c
s
rt

rs
v

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14
Complete factorization on Morgan Ivy Bridge (819 matrices)

10 threads

40 threads

Fig. 2.3: Complete Factorization of UF matrices on Ivy Bridge

of Matrix Rows

10 3 10 4 10 5

S
p

e
e

d
u

p
 o

v
e

r
m

k
l_

c
s
p

b
la

s
_

d
c
s
rt

rs
v

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Complete factorization on Compton Knights Corner

KMP_AFFINITY=compact (814 matrices)

56 threads

228 threads

nnz(L) + nnz(U)

10 4 10 5 10 6 10 7 10 8

S
p

e
e

d
u

p
 o

v
e

r
m

k
l_

c
s
p

b
la

s
_

d
c
s
rt

rs
v

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Complete factorization on Compton Knights Corner

KMP_AFFINITY=compact (814 matrices)

56 threads

228 threads

Fig. 2.4: Complete Factorization of UF matrices on Knights Corner

3. Conclusion. The goal of this project was to create a framework which when given
University of Florida’s matrices could time, record, and analyze the performance of HTS
in complete solves against as many worthwhile candidates as possible. The framework
successfully creates a useful test set from University of Florida’s larger set of matrices. It
performs full solves while timing and recording all valuable aspects of the solve. Finally,
It breaks down the raw outputs of the timings and is capable of turning raw outputs into
meaningful figures which could be used in a report while also providing enough of the source
data to create more specified figures if the need arose.

REFERENCES

[1] Intel Math Kernel Library. Reference Manual, Intel Corporation, 2009.
[2] T. A. Davis, The University of Florida sparse matrix collection, NA DIGEST, (1997).

CCR Summer Proceedings 2015 322

VISUALIZATION FOR MULTIGRID AGGREGATION

BRIAN M. KELLEY∗, CHRIS M. SIEFERT† , AND RAY S. TUMINARO‡

Abstract. The MueLu package in Trilinos is a modern, parallel implementation of the algebraic
multigrid technique. A key part of multigrid is a process called aggregation, where nodes in a mesh are
organized into small groups. Aggregation routines are sophisticated and are subject to many constraints.
An easy to use, configurable tool to visualize the aggregation process using VTK is therefore useful and is
described in this article.

1. Introduction. MueLu is the current algebraic multigrid library in the Trilinos fam-
ily of libraries. It speeds up solving linear algebra problems of the form A~x = ~b, where A is
sparse and ~b is one or more column vectors. Large problems in this form are solved as part
of the finite element method (FEM). In a FEM model, space is partitioned into a mesh.
For a single partial differential equation problem with N nodes making up the mesh, the
matrix A is NxN; each row and each column correspond to a node. For each connection
(edge) in the mesh, a nonzero entry is placed in A where the row is one endpoint of the
edge and the column is the other endpoint. The entry’s value is an approximate evaluation
of some differential expression at a fixed point in time. The vector ~b contains the boundary
conditions and other force terms for the problem’s domain. After solving the problem, ~x
contains the scalar values for all the nodes in the mesh that satisfy the original differential
equation. Implicit finite element simulations need to solve at least one large linear system
every time step, so a high performance sparse solver is very important for simulation.

MueLu accelerates the iterative process of solving these systems by repeatedly coarsen-
ing the mesh and using coarse approximations to improve the convergence rate of an iterative
solver. MueLu keeps track of a set of levels that each contain a (progressively smaller) ver-
sion of the matrix A and other data that is used in the multigrid process. Starting from
Level 0 (the finest level with the largest matrix), MueLu creates small groups (aggregates)
of nodes in the mesh. The center of each aggregate becomes a node in the next level’s
mesh. This means that the number of nodes and edges in the next level are smaller, so
the problem becomes easier to solve. MueLu applies a few iterations of a smoother to the
new coarse matrix, which generates an approximate solution for each level. More levels are
created until the size of the matrix reaches a small enough size to solve very quickly with
a direct solver. Then that exact coarse solution is used to eliminate most of the error in
the next finest level’s approximate solution. The solutions are smoothed again after being
corrected. Once this process reaches Level 0, a good approximation of the solution to the
original problem is available. This result can then be passed into an iterative solver like
Belos, and converges to an exact solution very quickly, [2].

The aggregation algorithms in MueLu are complicated. Nodes near the edge of the
mesh have to be handled carefully in order to make sure that aggregates end up with a
nearly equal number of nodes. Some simulation problems have cracks and discontinuities in
the mesh, so that certain node connections aren’t allowed. Because of these challenges, it
is useful to the MueLu developers to have an easy way of viewing the aggregation process
on each level. The goal of this visualization project was to show how aggregates appear on
the mesh. The code was to output widely compatible VTK files encoded in XML, and to
support both serial and parallel problems.

∗Texas A&M University, kelb150@tamu.edu
†Sandia National Laboratories, csiefer@sandia.gov
‡Sandia National Laboratories, rstumin@sandia.gov

B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 323

2. Aggregates Visualization. The aggregates visualization project began with a
discussion about the different ways that aggregates could be represented visually. The three
methods, or “styles”, that were prioritized were Point Cloud, Jacks and Convex Hulls. Each
one is described below. The styles have various strengths and weaknesses, which means the
user can choose one based on what kind of information they are looking for.

2.1. VTK Files. In all three of these modes, all geometry is defined in a .vtu (VTK
unstructured grid) format. The data is in XML format. XML-encoded VTK is a more
modern and powerful format than legacy ASCII VTK files, but is still compatible with all
software that uses VTK. In this format, a list of points are defined with scalar fields and
coordinates. For aggregates visualization, each point’s unique node ID, aggregate ID and
owning processor are stored in the VTK file. Then a list of cells are created. A cell can
be any geometric primitive, like a point, line or triangle. Each cell is defined from a set of
points. For example, a line segment is constructed out of two points. In ParaView, users
can select one of the points’ scalar quantities to map to a color gradient. Each cell is then
colored based on the data of its points.

2.2. Improvements. Before this project, MueLu did have a simple aggregate visual-
ization capability, but it was more limited. The “AggregationExportFactory” class that was
modified during this project was able to output a raw table of aggregate IDs and the nodes
that belong to each aggregate. To invoke the AggregationExportFactory, MueLu had to be
configured with a parameter list that explictly created the factory object. Then a separate
python script loaded the aggregate table as well as a coordinates array and used the python
library qhull to generate convex hulls for each aggregate. Finally, the script took the convex
hull data and wrote them to a legacy VTK file. The new aggregates visualization improves
upon this functionality in several ways. It is supported by the “easy parameter list” inter-
face, where an interpreter within MueLu automatically creates all needed factories. It is
more configurable, allowing multiple geometric “styles” of displaying aggregates, instead of
only the convex hulls. It can also output graph edges from the fine and coarse levels. Lastly,
it gathers all needed information directly from the level (including node coordinates), so it
runs completely during the hierarchy setup and requires no post-processing to produce a
VTK file.

2.3. Point Cloud. “Point Cloud” is the simplest aggregates visualization style. Each
node is represented by a single point, and no additional geometry is created to represent
aggregates. Aggregates can be viewed, however, by coloring each point based on its aggregate
ID. The benefits of this style are small file size, very fast geometry creation time and a less
cluttered appearance than the other styles for large 3D meshes. The main downside of Point
Cloud is that it is very difficult to tell which aggregate a point belongs to because of the
smooth default color gradient used by ParaView. This can be easily remedied by loading
a custom random colormap where consecutive aggregates have completely different colors.
Figure 2.1 shows a 2D point cloud, and Figure 2.2 shows a 3D one. In both figures, points
are colored by aggregate.

2.4. Jacks. “Jacks” is another simple visualization scheme. To produce this style,
each aggregate is required to have exactly one “root node”, preferably at the center of the
aggregate. MueLu’s default uncoupled aggregation code does this. In Jacks, line segments
are drawn from the root node to all other nodes in the aggregate. Then points are added
to the free ends of the line segments. The result looks similar to toy jacks. This style is the
only one that explicitly shows the root node. It also complements the coarse graph overlay
because the fine root node can be compared directly to the coarse node at the centroid of
the aggregate. Figures 2.3 and 2.4 show the Jacks style in 2D and 3D, respectively. Figure

324 Multigrid Visualization

Fig. 2.1: 2D Point Cloud

Fig. 2.2: 3D Point Cloud

2.5 shows Jacks with the coarse graph (red). Notice that the graph connections are at the
centers of aggregates. The coarse graph overlay will be explained in Section 2.6.

B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 325

Fig. 2.3: 2D Jacks

Fig. 2.4: 3D Jacks

2.5. Convex Hulls. A convex hull is the smallest convex polygon or polyhedron that
includes or contains a given set of points. In this case, the points are all the nodes in each
aggregate.

To construct 2D convex hulls, an implementation of the simple Jarvis March algorithm
was created. This algorithm first finds the point(s) with the minimum x coordinate, and
out of those the one with the minimum y coordinate. This point is known to be a vertex in
the convex hull. Then a ray is drawn from that point to some other point in the aggregate.
If any point is on the left side, the ray is rotated to pass through that point instead. This is

326 Multigrid Visualization

Fig. 2.5: Jacks with Coarse Mesh

repeated until no points are on the left side. The ray now passes through the next point in
the convex hull. The scan is repeated for the new point to determine the third point. This
procedure is repeated over and over, constructing the convex hull in a clockwise direction.
Eventually the starting point is reached again, which signals that the convex hull is complete.
On average, Jarvis March works in O(n2). Since the aggregates rarely contain more than
10 points, the algorithm runs very quickly in practice. Figure 2.6 shows 2D convex hulls.

Fig. 2.6: 2D Convex Hulls

3D convex hulls are more difficult to generate efficiently. The Quickhull algorithm was

B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 327

implemented as described in a blog post by Thomas Diewald [1]. Figure 2.7 shows 3D convex
hulls.

Fig. 2.7: 3D Convex Hulls

328 Multigrid Visualization

2.6. Parallel VTK Files. A significant benefit of using ParaView and VTK files for
visualizing aggregates is that VTK features a very simple way of reading and writing sets of
data in parallel. Since most large problems in MueLu are run with more than one MPI rank,
it is important that the visualization is able to show how different aggregation algorithms
handle processor boundaries. When a problem is set up, nodes are distributed evenly across
the threads, so that each processor “owns” all the nodes in a particular region of the mesh.

In order to visualize the nodes on all processors together, a parallel VTK file (.pvtu) is
created. This file contains a list of other files from which to read point and cell data. This
means that each MPI rank in the problem can write to its own VTK file, while only the
root processor (processor #0) is responsible for writing the short pvtu file. This technique
has performance benefits, since communication among processors is kept to a minimum and
the visualization geometry can be calculated in parallel. Figure 2.8 shows the content of
the vtu file from processor 1 in a 4-processor problem, and Figure 2.9 shows the combined
visualization of all processors. In these images, points are colored by processor ID.

Fig. 2.8: Aggregates on Processor 1

Notice that the aggregates do not extend into the processor boundaries. Uncoupled
aggregation only allows aggregates to exist within the boundaries of a single processor.

2.7. Graph Overlay. The visualization code also allows the user to request that edges
in the graph be drawn along with the aggregates. Both the fine and coarse graphs can be
displayed. The fine graph shows the connections among all the nodes that were grouped
together into aggregates, while the coarse graph shows the result of coarsening the mesh
through aggregation. Figures 2.10 and 2.11 are examples of the fine and coarse graph
overlays, respectively. They are drawn on top of the 2D convex hulls. This problem is also
running on 4 processors, and level 0 is shown.

Note that the fine mesh is a very simple square grid for this example problem. The
aggregates do not cross processor boundaries, but the grid itself is unaffected by being split
among processors. The coarse mesh makes the role of the aggregates clear. A node is placed
at the center of each aggregate, and connections are created between nodes and other nearby
nodes. The aggregation routine has done a good job, since the graph is mostly regular and

B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 329

Fig. 2.9: Aggregates on 4 Processors

Fig. 2.10: Fine Graph Overlay

nodes are evenly spaced.

330 Multigrid Visualization

Fig. 2.11: Coarse Graph Overlay

2.8. Usage. To use this code, a few parameters must be set in the MueLu parameter
list:

• aggregation: export visualization data
Must be set to true to enable the AggregationExportFactory.

• aggregation: output filename
The name of the destination VTK file.

• aggregation: output file: agg style
The desired style of aggregates visualization, e.g. “Jacks”

• aggregation: output file: fine graph edges
Whether to output the edges of the fine level graph.

• aggregation: output file: coarse graph edges
Whether to output the edges of the coarse level graph.

• aggregation: output file: build colormap
Whether to output a custom colormap in XML format for ParaView

These parameters can be set in the “global” parameter list, which will output VTK
files for every level. Alternatively, they can be set in “level n” sublists, which would only
produce the files for level n. If an XML factory list is being used, these parameters can be
applied to the AggregationExportFactory for the same effect.

The given filename can contain some special tokens, where every occurrence of the token
is replaced by another value before creating the file. “%PROCID” is replaced by the current
processor ID. “%LEVELID” is replaced by the ID of the fine level. For example, suppose
the problem is being run on two processors and has two levels. If the filename parameter
is set to “Aggregates-level%LEVELID-proc%PROCID.vtu”, then the following files will be
created:

• Aggregates-level0-proc-master.pvtu

• Aggregates-level0-proc0.vtu

B.M. Kelley, C.M. Siefert, and R.S. Tuminaro 331

• Aggregates-level0-proc1.vtu

• Aggregates-level0-proc-master.pvtu

• Aggregates-level1-proc0.vtu

• Aggregates-level1-proc1.vtu

These tokens prevent the vtu files from being overwritten for problems with multiple
processors and/or levels. The .pvtu files can be opened directly in ParaView to display the
entire level, with the aggregates from both processors.

The colormap option produces an XML file that defines a random colormap for use in
ParaView. The colormap produced by this option was used to color all examples included
in this article. For every few values between 0 and 1000, this file defines a random cool color
- a shade of blue, green or purple. Aggregate IDs are always non-negative integers, so their
colors get mapped to a cool color. Because the colormap has lots of random colors defined,
aggregates with consecutive IDs end up with significantly different colors, so they contrast
well with each other. Since ParaView’s default colormap is a smooth gradient from blue
to red, consecutive aggregates would have nearly the same color. Especially with the Point
Cloud style, it was very difficult to see distinct aggregates. The negative values are reserved
for graph overlays. The values -1 and -2 are mapped to red and orange, respectively. Using
the custom colormap, and coloring points based on aggregate ID, normal graph edges appear
red and graph edges filtered by FilteredAFactory appear orange. These lines then contrast
well with the cool colors of the aggregates themselves. Figure 2.12 shows the aggregates
and a fine graph with several filtered edges.

Fig. 2.12: Filtered Graph Edges: orange edges have been filtered out

332 Multigrid Visualization

3. Conclusions. The MueLu multigrid library relies on complex aggregation algo-
rithms to coarsen sparse linear problems. The aggregates visualization project will allow
both developers and users of MueLu to better understand aggregation and improve it over
time. It is easy to use, requiring only two parameters to be set in MueLu’s parameter
list. It runs automatically within hierarchy construction and outputs native VTK, so no
post-processing is necessary. The aggregates visualization should prove to be a useful tool.

REFERENCES

[1] T. Diewald, Convex hull 3d - quickhull algorithm. Personal Blog, March 2013.
[2] A. Prokopenko, J. Hu, T. Wiesner, C. Siefert, and R. Tuminaro, MueLu User’s Guide 1.0, Sandia

National Laboratories, 2014.
[3] T. Wiesner, M. Gee, A. Prokopenko, and J. Hu, The MueLu Tutorial, Sandia National Laboratories,

2014.

CCR Summer Proceedings 2015 333

SIMULATING CMT-BONE COMMUNICATION ROUTINES USING
LIGHT-WEIGHT NETWORK ENDPOINT MODELS

NALINI KUMAR∗ AND SIMON D. HAMMOND†

Abstract. In preparing to deploy application codes on next-gen supercomputers, it is vital to conduct
extensive algorithm and architecture design-space exploration to identify the optimal design choices. Ar-
chitecture modeling and simulation is often used to conduct such design space exploration. In this report
we explore the use of high-level end-point models called ‘Motifs’, part of the Structural Simulation Toolkit
developed at Sandia, to model and analyze the performance of key application routines in a large-scale
high-performance computing code called CMT-nek.

1. Introduction. Computational scientists and engineers use High-Performance Com-
puting (HPC) systems to simulate increasingly complex models of real world problems such
as climate modeling, fluid dynamics, and nuclear reactions. Already running on massive
supercomputers, more complex and detailed simulations are needed to gain insight into a
particular domain, which in turn requires even faster supercomputers. Emerging and future
system architectures will be able to provide the computational power necessary for these
insights that scientists demand. However, these systems will likely have significantly differ-
ent node and system architecture from the systems that exist today [4]. Identifying likely
exascale architectures, and optimizing these applications for the candidate architectures is
crucial for scientists to prepare for exascale systems.

One such application being prepared to be deployed on next-gen systems is CMT-nek.
It is a compressible multiphase turbulence (CMT) simulation software being developed by
researchers at the PSAAP-II Center for Compressible Multiphase Turbulence at University
of Florida [1]. CMT-nek is being developed to perform simulation of instabilities, turbulence,
and mixing in particulate-laden flows under conditions of extreme pressure and temperature.
CMT has applications in many environmental, industrial, and national security areas. In
many applications of national defense and security, CMT plays an important role in our
ability to accurately predict and control explosive dispersal of particles.

The CMT-nek development team faces the challenging task of developing optimized
software for next-gen machines whose architectures are as yet unknown and are not going
to be available before the end of this decade. There are too many variables such as system
architecture, programming models etc. that can affect the application performance [4].
Application code developers can benefit from early algorithm DSE before making changes
to the production codes. This will require exploring application performance on various
architectures via simulation.

In large-scale application codes such as CMT-nek, communication between processors
and nodes is needed to ensure that any data required for computations is available locally.
While computations are the useful work and communication can be thought of as an added
cost or overhead. In preparing the application for a larger machine, the aim is to keep this
cost in check and if possible reduce it. Network simulations can provide insight into the
application performance which can then be used to alter the code to improve performance.
Fine-grained network simulations, with thousands and millions of simulated end-points,
can be prohibitively slow. Network simulation from application source can further increase
the simuation time. Hence, for effective simulation studies we require light-weight end-
point models that can be used in conjuction with a high-level application representation to
conduct fast simulations.

∗University of Florida, Gainesville, nkumar@hcs.ufl.edu
†Sandia National Laboratories, sdhammo@sandia.gov

334 CMT-Bone SST Simulations

The rest of the paper is organized as follows: section 2 gives an overiew of the Structural
Simulation Toolkit (SST). Section 3 provides an overview of the major computation and
communication operations used in CMT-nek application. In section 4 we describe the end-
point models. In section 5 we describe the simulation experiments and discuss the results.
Finally, section 6 summarizes the work presented in the paper.

2. Network Simulation using SST. The Structural Simulation Toolkit (SST) from
Sandia National Laboratory is a parallel discrete-event simulation framework for simulation
of large HPC systems at different levels of granularity [7]. SST is not a simulator by itself
but a framework that provides support for integration of different simulators. The SST
allows different architecture simulators and component models to be combined together to
simulate a larger and more complex system. The simulators can interact and share data
with each other which enables exploration of system-wide performance issues.It enables
greater interoperability between simulators and models that were developed independently
from each other. The ability to couple different component models is also important for fast
exploration of system wide performance issues.

There are two main parts to SST - the Core and the Element libraries. The SST Core
is the simulation backend that handles events, synchronizes execution between simulation
processes, and updates the timestamps. It is responsible for setting up the simulation by
instantiating components, establishing the links between these components, partitioning
the simulation into MPI processes for parallel simulation, managing the causality in event
queues, and ending the simulation reliably. It also provides the means for gathering statis-
tics from a simulation run. The Core also provides other services and interfaces to the
Element libraries such as a statistics API for collecting simulation statistics. The other part
of SST is the Element library. Each Element in the library is a simulator or a model which
interfaces with the SST Core. The Elements include processor simulators(Ariel), mem-
ory models(MemHierarchy), network models (Merlin) etc. These libraries are dynamically
loaded and linked at runtime as needed for a simulation.

In this project our primary intent is to explore the performance of communication
algorithms used in our application of interest, CMT-nek, as the machine and problem size
grow. Typically researches use cycle-accurate simulations for architectur simulations but
these simulations become prohibitively slow as the system size grows. On the other hand,
analytical models can lack sufficient fidelity and depth for either system or algorithm design
space exploration. For our network simulations, we use the Ember Element.

Ember is a collection of light-weight end-point models called Motifs. A Motif injects
traffic into the network, receives messages, and reacts to them. As shown in Figure 2.1,
Ember connects to the communication protocol model, Firefly, which in turn interfaces with
the physical layer model, Merlin, that actually models the communication on the network.
Since the aim of Ember is to allow simulation of systems with thousands and millions of
end-points, it does not simulate processor or memory behavior. Instead, an application
Motif contains a time estimate for operations that are local to an end-point.

In order to use Ember to simulate an application running on a system, the user needs to
write a motif if one doesn’t exist already. For large scale applications, and even mini-apps,
this is a difficult task since the application behavior is to be condensed into a few lines
of code in the Motif. This requires that the Motif developer be familiar with the overall
flow of the application and any communication algorithms that it uses. In the next section
we discuss our understanding of major phases in CMT-nek and communication algorithms
unique to it.

N. Kumar and S.D. Hammond 335

Fig. 2.1: Network Simulation Stack in SST

Ember
Collection of ‘Motifs’ or light-

weight pattern generators

Firefly
Low-level communication protocol model

Support for multiple ranks/NIC

Merlin
Router nodel for network physical layer

Supports a range of topologies, arbitration policies

SST-core
Simulation backend

Initialize, synchronize, and end simulation

3. Overview of CMT-nek. CMT-nek is a spectral element method based compress-
ible multiphase turbulence (CMT) simulation software being developed to be deployed on
exascale systems. It is being designed to hook into the Gordon Bell prize winner incom-
pressible flow simulation code Nek5000 which has been shown to scale to a million MPI
ranks [2] [8]. CMT-nek inherits functionalities such as element topology, approximation
polynomials, MPI strategies, optimized linear algebra operations etc, from Nek5000 but
solves fundamentally different physics equations for compressible physics as described in [6].
CMT-nek uses a domain decomposition method with generates hexahedral elements which
are then mapped to cubic reference elements for the simulation. The three major phases
in CMT-nek involve computing (1) the source terms, (2) the flux divergence, and (3) the
numerical flux for all the cubic reference elements.

Since the application code base is massive and is under active development, it is non-
trivial to understand and not conducive for fast and extensive performance profiling. To
alleviate this isssue CMT-nek developers have developed a mini-app called CMT-bone which
abstracts the behavior of CMT-nek [5]. We use CMT-bone as the basis for our end-point
models.

As mentioned earlier, there are three phases in CMT-nek. The lastest version of CMT-
nek, and hence CMT-bone, has limited multiphase coupling. As a result the source terms
are set to zero. The flux divergence computation is abstracted as the dot product of
the gradient operator and the flux vector. It is implemented as the multiplication of the
derivative operator matrix (N,N) and the element matrix (N,N,N,Nel) to calculate the
partial derivatives along the three Cartesian coordinate dimensions (r, s, t) as shown in
Figure 3.1. Here N is the number of grid points along any one direction in a cubic reference
element and Nel is the total number of elements in the computational domain. The elements
and derivative operator matrices are fairly small, with N ranging between 5 and 25.

The numerical flux term is computed to enforce boundary conditions necessary to
ensure continuity on the element boundaries. The flux divergence is evaluated on the sur-
face of the reference elements which requires surface data exchange between neighboring

336 CMT-Bone SST Simulations

Table 3.1: Pseudo-code for the partial derivative calculation to estimate the flux-divergence
term

Pseudo code for the partial derivative calculation of u along r performed in the spectral
element solver used in CMT-nek. N is the size of each element and Nel is the number of
elements per processor. Partial derivatives are computed along r, s, and t at each timestep
in the simulation.
for ie = 0 to Nel − 1

for k = 0 to N − 1
for j = 0 to N − 1

for i = 0 to N − 1
for l = 0 to N − 1
dudr(i, j, k, ie) += a(i, l) * u(l, j, k, ie)

elements. These exchanges are implemented using a specialized gather-scatter library. At
the start of a CMT-bone simulation, three gather-scatter methods are evaluated to deter-
mine the best performing candidate for the given machine and problem setup. These three
exchange strategies are : (1) pairwise exchange, (2) crystal-router, and (3) all reduce onto a
big vector. Unlike the original Nek5000 (or its mini-app NekbonE), in all our simulations to
date, we have observed that pairwise exchange is considerably faster than the crystal router
and all reduce for the problems being studied (Table 3.2).

Table 3.2: Performance of pairwise exchange and crystal router methods (per timestep)

Setup:
processes=256, processor distribution=(8,8,4), eltSize=10, total elements=25600
element distribution=(40,40,16), local element distribution=(5,5,4)
Algorithm Time (avg) Time (min) Time (max)
Pairwise exchange 3.189e−04s 2.445e−04s 3.535e−04s
Crystal router 7.999e−04s 7.888e−04s 8.083e−04s

Of the two phases in CMT-bone, the flux divergence computatuion and the nearest-
neighbor communication, the majority of execution time is spent in the computation part,
though the cost of communication is non-negligible 3.3. In summary, the current behavior
of CMT-bone can be abstracted into an end-point model or Motif with several iterations of a
flux divergence computation phase followed by a nearest-neighbor exchange communication
phase. We use this understanding to develop the application end-point models for study.

N. Kumar and S.D. Hammond 337

Table 3.3: CMT-bone profiling results for 256 ranks on 16 nodes of Compton
nelt = 100, eltSize = 13, variable = 5

Setup 1 rank/core 2 ranks/core
Processes 256 512
Total elements 25600 51200
Processor Distribution: px, py, pz 8,8,4 8,8,8
Element Distribution: nelx, nely, nelz 40,40,16 40,40,32
Local Element Distribution: mx,my,mz 5,5,4 5,5,4
Execution time metric 1 rank/core 2 ranks/core
compute time (per timestep per process) 5.527e−02 9.146e−02

communication time (per timestep per process) 1.081e−02 3.247e−02

solve time 0.6594e03 0.122e04

total compute time 1.4149e05 4.589e05

total communication time 2.7677e04 1.679e05

4. Developing Motifs for CMT-bone. Key application parameters that affect the
workload distribution and impact performance are exposed to the user in the CMT-bone
Motifs. Table 4.1 lists these parameters and their definitions.

4.1. Flux-divergence model. As can be seen from table 3.1, the application param-
eters that affect the execution time of flux divergence are the polynomial degree, N − 1 and
the number of elements per processor, Nel. In our motifs, eltSize is the same as N and Nel
is a product of (mx,my,mz). Since we are interested in the commnication performance, a
detailed processor model is not required as long as we can provide a good estimate for this
local operation. In our Motifs we provide three ways of providing this estimate of execution
time.

First, the user can specify a fixed value for the time taken to do the flux divergence
computation (derivative calculation) for all the elements of one physical quantity (velocity,
presssure, etc.). Alternately, the user can provide the frequency of the processor core and
the number of floating point operations per cycle that the core can compute. Based on the
application parameters which specify the core workload, an estimate for computation time
can be obtained. In a real system the execution time would not be the same for across
different cores in the machine or across different iterations. To simulation this behavior,
the user can choose to add Gaussian noise to the execution time by specifying the mean
and standard deviation of the compute time. We do not have support for non-Gaussian
distributions in the current models. In future, we wish to support random lookups during
simulation from a lookup table containing samples of execution time obtained from real
testbed experiments.

4.2. Nearest-neighbor communication model. CMT-bone contains the same im-
plementation of MPI communication routines used in CMT-nek. The mini-app uses a simple
preconditioner and assumes an ideal load balancing behavior, so the communication in CMT-
bone is not exactly the same as in CMT-nek. These MPI routines - pairwise exchange and
crystal router all-to-all, are part of a gather-scatter library. While the crystal router isn’t
used in our limited application runs, it may be used in future as more complicated physics
is implemented in the application. The spectral element coefficients are stored redundantly
(and locally) on each processor instead of maintaining a global matrix and each processor

338 CMT-Bone SST Simulations

Table 4.1: Parameters for CMT3D and CMTCR motifs

Parameter Definition
variable Number of physical properties (velocity, pressure, etc.)
eltSize Size of cubic reference element (1+polynomial degree)
px, py, pz Process decomposition in x,y,z
mx,my,mz Element decomposition per process in x,y,z
threads Threads per processor (default=1)
procflops FLOPS/cycle of processor core used to estimate compute time
procFreq Frequency of processor core used to estimate compute time
nsComputeMean Mean for adding gaussian noise to compute time
nsComputeStddev Standard deviation for adding gaussian noise to compute time
iterations Timesteps or iterations of conjugate gradient solver

is given index sets containing the global ids of the elements. During a discovery phase, each
process identifies its neighbors by identifying for every global index i on process p all the
processes q that also have i. Once the neighbor lists are created, the actual transfers take
place using one of the algorithms below.

4.2.1. Crystal Router. The crystal router was developed to support transfer of ar-
bitrary length messages between arbitrary nodes on a hypercube network [3]. It performs
well for applications with irregular communication behavior, where the size of transfer is
known at runtime. It can be used for scalable all-to-all or all-to-many exchanges. Due to
the hypercube nature of the decomposition, it guarantees termination in at most 1 + log2P
stages, where P is the number of MPI processes. In our CMT-bone model, each processor
communicates with it six neighboring processes. (This is unlike the Nek5000 code in which
each element communicates with 26 neighbors [8]). After a process finishes its compute
phase, it creates a buffer of data that it needs to send to its neighbors. During the first
stage of communication every process p (p < P/2) sends to process p+ P/2 all the data it
needs to send to processes P/2 to P − 1. Process p (p > P/2) sends to process p − P/2
all the data it needs to send to processes 0 to P/2 − 1. This is done recursively for log2P
stages, where P in recursively halved with every stage.

4.2.2. Pairwise Exchange. The pairwise exchange algorithm is fairly straight-forward.
After a process finishes its compute phase, it combines all the ’face’ data from the element
volume data into a buffer that is then transferred to its neighboring processes. The re-
ceives are blocking but the sends are non-blocking. Once a process has received all the
data it needs, the iteration is complete and it can proceed to simulating the next timestep
(iteration). Since each process has six neighbors, it is involved in six transfers.

5. Experiments and Results. To perform fast simulations, we had the option of
using a simulator that doesn’t use a central clock to synchronize events. But, application
profiling results show that the approx. 90% of the communication time is spent by processors
in MPI Wait. Table 3.3 and figure 5.1(b) shows some more profiling results for CMT-bone
on 16 nodes of Compton, with and without hyperthreading enabled. Compton is a 42-node
ASC cluster at Sandia National Laboratories, Albuquerque, NM with two 8-core Sandy
Bridge Xeon E5-2670 connected with Mellanox Infiniscale IV QDR.

N. Kumar and S.D. Hammond 339

0

1

2

3

4

5

6

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120%
 o

f
to

ta
l a

p
p

lic
at

io
n

 e
xe

cu
ti

o
n

 t
im

e

MPI process

% time spent in MPI calls across all MPI processes

(a) Time spent by each CMT-bone MPI
process in communication

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

Isend_14 Isend_13 Allreduce Isend_16 Send Bcast

M
es

sa
ge

s
se

n
t

(b
yt

es
)

Aggregate Size of Messages sent in various MPI calls

Total data transferred

Average data transferred

(b) Total and average size of messages sent
in the most frequently called MPI calls

Fig. 5.1: CMT-bone pairwise exchange profiling data

6. Conclusions and Future Work. We analyzed the performance of two key CMT-
bone communication routines and developed light-weight end-point models or motifs for
them. These motifs were used to drive network simulations in SST to study the performance
of the two communication algorithms on different architectures.

REFERENCES

[1] Psaap-ii center for compressible multiphase turbulence.
[2] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, Nek5000, 2008.
[3] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto, J. K. Salmon, and D. W. Walker,

Solving Problems on Concurrent Processors. Vol. 1: General Techniques and Regular Problems,
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[4] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally, M. Denneau, P. Fran-
zon, W. Harrod, K. Hill, et al., Exascale computing study: Technology challenges in achieving
exascale systems, (2008).

[5] N. Kumar, M. Sringarpure, T. Banerjee, J. Hackl, S. Balachandar, H. Lam, A. George, and
S. Ranka, Cmt-bone: A mini-app for compressible multiphase turbulence simulation software,
Workshop on Representative Applications (to appear), (2015).

[6] J. M. Powers, Two-phase viscous modeling of compaction of granular materials, Physics of Fluids
(1994-present), 16 (2004), pp. 2975–2990.

[7] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield, M. Weston, R. Risen,
J. Cook, P. Rosenfeld, E. CooperBalls, et al., The structural simulation toolkit, ACM SIG-
METRICS Performance Evaluation Review, 38 (2011), pp. 37–42.

[8] T. C. Team, The cesar codesign center: Early results, tech. rep., April 2012.

CCR Summer Proceedings 2015 340

IN SITU STREAM PROCESSING AND STORAGE FOR EXASCALE
SYSTEMS

ERICH W. LOHRMANN∗ AND PATRICK WIDENER†

Abstract. In many systems there are often common operations that programmers will make on data.
While specializing the implementation of these operations each and every time allows for extremely optimized
workflows, their is often a trade off with development time and the flexibility of the solution. In this paper, we
propose a general class of operator on data, which we call the storage stone. We explore the redevelopment of
previous workflows and examine the functionality benefit that the storage stone produces in these workflows.

1. Introduction. Scientific applications are often built at the highest level of abstrac-
tion, by scientists to study their particular area of science. These scientists often have a
limited, if any, knowledge of the inner mechanisms of computers. However, some problems
that researchers in non Computer Science fields face often require the use of computers.
While small scale projects can be done with little difficulty by amateur computer program-
mers, large scale projects sometimes require intimate knowledge of computers and the way
in which they allocate resources. For this reason, some computer scientists build tools that
work on the system level to improve resource allocation across High Performance Comput-
ing. When these tools are libraries that are used to build complex systems, we call them
“middleware”. Middleware is often developed to make it easier for scientists to build high
performance applications, without worrying about the underlying mechanisms necessary for
high performance.

In this paper, we will focus on extensions to a communication middleware known as
EVPath. EVPath is a high performance communication middleware used to transport arbi-
trary data types between arbitrary nodes with arbitrary byte order and arbitrary hardware.
It also does this very, very quickly. EVPath is not a communication system. EVPath is the
library tool used to build many different and versatile types of high performance commu-
nication systems. Additionally, EVPath contains pieces that naturally support the concept
of high performance application components.

In the world of high performance computing, complete applications are often broken
down into several different components. These “workflows” often consist of more than one
process that communicate with each other using some type of high performance communi-
cation system. These workflows are often highly specialized to meet the needs of the input
data, the physical hardware the workflow runs on, and the format of the output data. How-
ever, while the system may be specialized, there do exist some components of the workflow
that are general enough to be reusable.

For example, it is often true that a mechanism for buffering data, for analysis and to
guarantee redundancy, is often needed between components of the workflow. At other times,
data must be gathered together to run some algorithm. This is typically done, using either
a “sliding window” or “tumbling window” algorithm, both of which are explored below.

I propose that these are all examples of the same general class of operator on data. This
class of operators is prevalent in many different types of systems, from monitoring to high
performance computing applications. This work is an extension of EVPath[2], which is in
essence a high performance data transport system with flexible data typing. The EVPath
library stack includes the ability to send filtering and transformation code from the receiving
process to the source process, all while compiling the code on the source machine to ensure
best use of heterogeneous software.

∗Georgia Tech College of Computing, ErichLohrmann@gmail.com
†Sandia National Laboratories, pwidener@sandia.gov

E.W. Lohrman and P. Widener 341

The transported and compiled code is known as CoD or C on Demand[3]. EVPath’s
API is filled with many different “stones”. Each “stone” has a basic purpose, such as
transforming, filtering, sending, or receiving data. The EVPath stones have a natural use
in the development of the generic operations mentioned above. The stones that transform
and filter data on a node aside from the one who originates the source, write their code in
CoD, which is a small subset of C. We believe that while comprehensive the list of necessary
stones is not yet complete. For instance, we have developed a “storage stone” which is
actually a class of more specific stones with related but different purposes.

The storage stone, provides aggregation and redundancy functionality to the EVPath
library. This functionality is captured in separate subclasses of the generic storage stone.
The first is the redundancy storage stone, which is in essence actually two stones, a store
storage stone and a transaction storage stone. The store storage stone acts in the flow
graph where we wish for data to be stored with some guarantee of persistence (though not
necessarily non-volatile persistence). The transaction storage stone is used by the system
to guarantee that the data is received on the far end of the workflow. In this way, we
have created a generic form of “streaming persistence” in workflows that transport data to
potentially many different nodes.

In addition to the redundancy functionality of the storage stone, this class of stone also
carries the functionality of aggregation. In particular we implement the logic for a “sliding
window” and a “tumbling window” stone.

A “sliding window” of data is a data set with n, number of elements. These n elements
make up a single complete window. Some operation, typically an average or some other
mathematical operation, operates on the window. In a sliding window, when a new element
enters a complete window, the oldest element is removed. Therefore, all complete windows
have n elements. On the other hand, a rolling window acts differently when a new element
is introduced to a full window. A complete rolling window still has n elements, but when a
new element enters the complete window, all current elements in the window is discarded.
Rolling windows normally never act on any incomplete windows, so operations almost always
wait until the window is once again complete. The difference between the two windows is
most easily seen by the number of operations on the data. A rolling window will only act
on its data set every n iterations of data and a sliding window acts every iteration of data
after the first n iterations make a complete window.

These stones are single stones that can be used to control throughput of the data that
runs through the network. In addition, it allows for the quick processing of data when a
specified amount of data arrives at the storage stone. All storage stones share the same
characteristic that they act on some subset of the data.

In this paper, we examine the benefits of the storage stone in two different already
implemented systems. The first is the Proactive Directory Service [1], or PDS, which is a
directory service that allows applications to register a callback handler to be notified when
some element registered in PDS changes. The second is the SmartPointer [4], which is an
multiprocess scientific workflow system.

1.1. EVPath. EVPath is a communication middleware library. EVPath, as previously
mentioned, is not a communication system. The differences are subtle, but important.
A communication system is the layer on which an application or a group of applications
leverage to move data around on the system. EVPath, on the other hand, is a library
used to build that communication system. As such, EVPath’s API is filled with a series
of “stones” that manipulate or transport data in a particular manner. A typical EVPath
system consists of several nodes, all with one or more stones on each node. EVPath is the
highest level of abstraction, built on top of other library layers that are out of the scope of

342 Storage Stone

this paper, but are worth mentioning as they provide some of the functionality described
above.

Each stone in EVPath, typically contains one action. These actions divide the stones
into separate stone “types”. For instance, an action that filters out unwanted data is known
as a “filter stone”. In addition to the filter stone, their exist: transform stones, source
stones, sink stones, bridge stones, router stones, split stones, and multiqueue stones. All
of the stones are named canonically, therefore transform stones transform the data, filter
stones filter the data, etc.

Individual stones and nodes are not aware of the layout of the entire data flow graph of a
specific application or groups of applications. Instead, when specificity is needed in certain
stones, stones subscribe to a certain data type and all other data types are discarded.
Furthermore, some stones like the router stone, split stone, and multiqueue stone, can
publish to multiple different stones. As you can see, EVPath stones are the “fundamental”
types that many communication systems need to build their systems. In fact, our ability to
place the stones on any node, without regard for the total data flow graph, allows us more
flexibility in where data is processed and even has the added feature that upgrades to the
system can be piecewise, node by node.

2. The Storage Stone.

2.1. Background Information. The storage stone is a natural extension of the EV-
Path library. The EVPath library stack evolved out of a need for easy development of high
performance transport systems that worked well across heterogeneous systems and with
heterogeneous data. We reiterate that EVPath is not a transport system itself, but rather a
library that manages a lot of the nasty communication code that inevitably must be written
as a consequence of building a high level transport system.

With that design goal in mind, the API consists of creating and controlling a series of
“stones”. For instance, EVPath will allow you to create a “bridge stone” which is a stone
that sets up the connection to transport data across the network from a sending node to
a receiving node. APIs for creating “filter stones” and “transform stones” also exist, both
of which perform operations on the data exactly as their names imply. Each stone lives
in the node and process in which it is created. Furthermore, the EVPath library makes
interprocess data transport on the same node, memory and computation efficient. Data
type definitions in EVPath are handled by a specific type definition system known as FFS.
The unique power of FFS allows EVPath to operate on expanded types. Since stones are per
node per process and FFS allows stones to pick up expanded types, upgrades to the system
can be done piecewise rather than taking down and upgrading the system all at once.

While the storage stones that implement the windows can live in the base EVPath,
the redundant focused storage stones that provide the “streaming persistence” require con-
nection information from “upstream”. As described previously, EVPath does not naturally
provide this information as data flows into stones set up and connected on a node. Luckily
there is a small layer built on top of EVPath known as EVdfg. EVdfg allows a master
data flow graph process to control the connections between processes that register with the
master dfg process. This allows for the natural extension of the persistent storage stones as
the upstream information is available to the master process.

2.2. Technical Details. It is in this environment that the storage stone has been
created. The storage stone is implemented on top of a previous stone known as a multiqueue
stone. The multiqueue stone will store a data type in a couple of queues depending on its
data type and then run a CoD based handler function. It is possible for the multiqueue
stone to submit data to multiple different ports and therefore multiple different pathways

E.W. Lohrman and P. Widener 343

in the network data flow. Naturally, as the storage stone is implemented on top of the
multiqueue stone it inherits all of this functionality.

Each type of storage stone has a slight different implementation on top of the multiqueue
stone. For the window storage stones, it is easy to implement a piece of CoD code that is
inserted at the beginning and the end of the user provided CoD code that facilitates the
different window like behavior. In this way, the storage stone user provided code is run only
when there is a complete window and the stone can output any type of user defined data
type.

On the other hand, the persistent stone is a little harder to produce. Two stones must
technically be set up, the store storage stone and the transaction storage stone. Luckily, the
transaction stone requires no CoD code to be written by the user. However, a store storage
stone must listen to some data from the transaction stone associated with the sink stone
on the farthest end of the data flow graph. The underlying messaging structure is fairly
generic, so the user need only set up a transaction stone in the point of the data flow graph
that he wishes to guarantee persistence.

The transaction stones main job is to keep a list of the messages it should see, versus
the id of the messages it actually receives. The transaction stone must keep an individual
integer tally because as in any distributed system the ordering of events can be fuzzy. Should
a sink stone request a transaction check and the transaction stone has not received all of
the intended messages, the transaction stone sends a resend data type message to the store
storage stone. The store storage stone then sends the messages down a different dfg path
in an attempt to resend the messages. The success of this attempt can vary depending on
the extent of the failure and the nature of the dfg.

How we determine which path to send the data down after a failure and how many dfg
options exist are system dependent. We have built the storage stone to handle multiple
output paths, but the user must always determine the policy mechanisms for when a failure
occurs. Additionally, there is an option to write the data out to disk, which may be used
in handling repeated failures or may be used as the primary means of storage rather than
having the data live in memory. This may free up RAM space overhead in a trade off for
time, or it may be useful when dealing with deep memory hierarchies and fast non-volatile
memory.

3. Use Cases.

3.1. Proactive Directory Service. In some systems, there exists a need to watch
some specific data for change. These applications are known as state full applications and
they are dependent upon the state of some data. This data may not even necessarily exist
on node. A naive solution to such a problem is to continually poll the data at some fixed
or varied point in execution to see if the state has changed. It is easy to see that such
an approach does not scale well when many applications need to poll many different data
states.

PDS attempts to address this basic limitation by instituting a Proactive approach to
the problem. A client application can register a handler with the server PDS for some
data structure. When that data structure changes, the server will then push the event
change to all clients that have registered callback functions. This obviously reduces network
traffic as well as wasted CPU cycles created by the previous continuous polling approach.
Furthermore, it was possible to filter data in such a way so that only the relevant messages
reached the interested client. The filtering was done on the server side, to reduce unnecessary
network traffic.

It is in this environment that we wanted to introduce aggregate storage stones. The
idea being that we could not only filter the data, but potentially get an average or some

344 Storage Stone

other mathematical comparison on pieces of the outgoing data and output the aggregated
value. This would allow the client more control over the evaluation of the data.

3.2. Technical Details of the PDS Implementation. The original PDS code is
old, near ancient with respect to the modern library stack, so the first part of my work was
to renew the code. The storage stone classes do not need any special new EVPath APIs,
but the PDS code was written in a time when the EVPath library was not fully realized.
The old PDS code did not fully utilize the multiple type functionality. More specifically,
the old PDS code used a single data structure to relay multiple changes to a single event
type. To do this, the authors of the code created a general blob char pointer payload entity
inside of the event type. This in itself, was not a problem in the normal C handlers as C
has the ability to pack and unpack data easily using creative type pointers.

Unfortunately, CoD does not have this ability. Since the functionality of the storage
stones are written in CoD, we needed the ability to not only look at the data, but ma-
nipulate and change it in situ. Since CoD could not handle the placing and renaming of
pointer payloads correctly, we were forced to fundamentally change the structure of PDS
to accommodate multiple specific types for data objects. This was a fairly large rewrite as
we wanted to ensure that PDS maintained its original functionality in addition to the new
storage stone functionality. This took some time as PDS allows users to register for handlers
to data structures that have not yet been created.

The reason this rearchitecting was necessary was to facilitate the use of the storage stone
for aggregation operations on some data structure in a natural manner. To demonstrate this
functionality, we are aiming to use PDS to monitor cluster system information and make
intelligent decisions based on averages or other mathematical summations across small data
sets. By implementing both the sliding window and the rolling window, we can easily
monitor the average output of data on the node itself in situ, rather than ship the network
data to some centralized or distributed client. We hope to prove reduced network traffic
with similar if not less lines of code.

3.3. SmartPointer. The SmartPointer system is a comprehensive scientific data work-
flow that analyzes the output from a LAAMPS simulation. The data is all of a block of
material, modeled with atoms, that is put under pressure and breaks in the relative middle
of the simulation. It is a complicated system with many separate processes, all of which can
be run on separate nodes or the same node, thanks to the EVPath transport mechanism.
Please refer to Figure 3.1 for a diagram on the separate components of the SmartPointer
system.

E.W. Lohrman and P. Widener 345

EXMD

Bonds

CSYM

Potential_Client

CNA

OpenGL_Display

Fig. 3.1: The SmartPointer workflow diagram. The red arrows indicate feedback loops
that allow the source process to change the bond calculations. The yellow filled circles
are processes that connect to the workflow at runtime and can subscribe to any specific
channel. In this case, the OpenGL display only subscribes to the CNA channel, while the
Potential Client subscribes to the Bond Channel, CNA channel and CSYM channel.

Aside from the output LAAMPS simulation, their exists a bond server, which efficiently
writes out which atoms are bonded to which other atoms with respect to two radius values.
The first radius value determines the minimum distance that an atom can be away and still
be bonded, and the second determines a maximum distance that an atom can be away from
an atom and still be bonded. In addition, the bond server also outputs radial distribution
data that details the distance between atoms partitioned into some n, number of bins, and
set to only look at atoms below some max radial difference of rmax.

The bond server emits the radial distribution directly to any interested client. It then
emits the bond information to another piece of the system known as the CSym processes.
This process uses the bond information to calculate a central symmetry number for each
atom and adds it to the data structure. The central symmetry value can be used by display
components as a convenient tag to find pieces that are close to the breaking point. This
value is not currently used by any real display components but it is part of the system so
we felt we should mention it.

The CSym process then emits to a process called CNA. CNA stands for common neigh-
bor analysis. The common neighbor analysis process takes the atoms and their associated
bonds and analyzes their connections to give each atom a “color”. This color allows us to
easily visualize common patterns on the final display pieces if we so choose. There is some
difficulty here with the bond distances mentioned in the bond server. We will explain in
detail when we get to that piece in the next section.

Finally, their exists a display component that subscribes to the output of the CNA
server. While it is possible, and in fact a feature, of the SmartPointer system to allow
multiple clients to register to different parts of the system to cut down on the associated
data, we only have the one display component currently running. It depicts the block of

346 Storage Stone

atoms literally, each with their own color. It utilizes deprecated fixed-processing pipeline
OpenGL code to depict the atoms and their colors, but it is good enough to view the
simulation with no visible delay.

The entire SmartPointer system was tied together with EVPath. EVPath manages the
data being sent from one place to another and it allows for the “channels” of data to have
sources but no sinks. This is useful functionality as it allows us to set up “channels” that
could be subscribed to in the future without requiring that the data must go somewhere
in the beginning. Furthermore, EVPath allows for a feedback loop between the display
components and the bond server. To find the correct min and max radius bonding values
between atoms, we need the radial distribution of the data and have the ability to change
it on the fly. It is for this reason that the bond server outputs the radial distribution data.
The bond server then subscribes to a feedback “channel” from the display components, so
that it can bond data differently as time moves forward.

Fig. 3.2: SmartPointer system example output

3.4. Technical Details. The original SmartPointer system was written approximately
a decade ago. It was originally written for the use of Ipaq clients. Since then, some work
has been done to fix Android clients and utilize CUDA in part of the system to speed
computations. As you can imagine the SVN directory where the code lived was a complete
mess. We worked to clean up the folder and reintroduce only the most essential parts to our
system, stealing and reusing code where we were able to do so. However, their were some
key missing pieces that had to be replaces.

For instance, the bond server used a mathematical C library to create a KDtree for the
atoms. The KDtree was then supposed to speed computation when searching for bonds.
Unfortunately, this library has changed/was no where to be found and so we had to reim-
plement the KDtree search of the bonds. We chose to replace the libraries functionality
with an open source C++ data structure known as KDtree++. While the code to create

E.W. Lohrman and P. Widener 347

the KDtree already implemented in the open source code, it took us some time to invent
our own algorithm to do the bond searching with the two radius’s quickly enough to beat a
straight linear search. This detour took some time.

Furthermore, while the EVPath code was not deprecated, we decided that it would
position us best for future research if we moved away from the old peer-to-peer model to a
more centralized model. EVPath has a thin layer on top that makes this fairly easy, known
as EVdfg. This transition took some time to facilitate as the communication mechanisms
of all of the components had to be switched over to the new model.

In one of the iterations of the SmartPointer system, there was an attempt to utilize
CUDA and the GPU for some auto-correlation functions over a subset of the data. These
functions implemented some sliding window and rolling window functionality. The goal of
getting the SmartPointer system updated is to reuse these functions but implement them
with the storage stones. The storage stones do not add any new functionality, but rather
are simply replacing the same general code with a general interface to demonstrate the
usefulness and practicality of the storage stone itself.

4. Conclusion and Future Work. In conclusion, the majority of the work produced
thus far has been in revitalizing and reworking old code to allow us to add functionality
to the existing frameworks. Within the next couple of weeks, we hope to have running
experiments detailing the usefulness of the Storage stone in two separate systems. The
revitalization of the SmartPointer workflow is not yet complete, as we still need to add a
component that will allow for clients to subscribe to a specific channel in the workflow. This
mechanism was lost when we switched over to the centralized model, but it is possible to
add it back with a little more time.

Furthermore, the Storage Stone will find its way into the SmartPointer workflow by
moving some of the CUDA mathematics code into the bond server directly. This too must
be done in the next couple of weeks. Our goal is to write a paper detailing the in situ
benefits of the Storage stone in systems like these.

REFERENCES

[1] F. E. Bustamante, P. Widener, and K. Schwan, Scalable directory services using proactivity,
IEE/ACM SC Conference, 2002.

[2] G. Eisenhauer, M. Wolf, H. Abassi, and K. Schwan, Event-based systems: opportunities and chal-
lenges at exascale, 2009.

[3] G. Eisenhauer, M. Wolf, H. Abbassi, S. Klasky, and K. Schwan, A type system for high perfor-
mance communication and computation, 2011.

[4] M. Wolf, Z. Cai, W. Huang, and K. Schwan, Smartpointers: Personalized scientific data pointers
in your hand, 2002.

CCR Summer Proceedings 2015 348

MATERIAL MODELS FOR NEXT GENERATION PLATFORMS

NICOLAS MORALES∗, DAVID LITTLEWOOD† , AND STAN MOORE‡

Abstract. Compute clusters for scientific computing platforms are beginning to take advantage of
GPU accelerators and coprocessors like the Intel Xeon Phi that provide compute capability far beyond what
a single CPU node can achieve. We aim to understand how these next generation computing platforms
can be used to improve the performance of solid mechanics codes through an investigation of the scientific
computing package Albany’s Laboratory for Computational Mechanics (LCM).

Specifically, we examine the impact material model evaluations have on the performance of the overall
solution process. We provide a new material model implementation that uses the Kokkos library for cross-
platform support on nodes with accelerators or coprocessors. We suggest modifications to the LCM material
models, Albany, and the underlying Trilinos library that Albany uses, including Kokkos.

Our results show that more complex material models can have a significant impact on solve time. We
show that even with simple material models we can improve the performance of the constitutive model
kernel for large models (100000 elements) by using accelerators. Finally, we provide a framework for the
path forward for taking advantage of these next generation computing platforms in Sandia’s engineering
analysis codes.

1. Introduction. The use of accelerators and coprocessors is becoming more prevalent
in the world of high performance computing and scientific computing [4, 5]. Future Next
Generation Platform (NGP) supercomputers planned by the Department of Energy will
utilize accelerators to provide peak compute performance. Sandia’s production software
does not currently take advantage of these hybrid clusters.

One goal of the Albany framework is to provide a proving ground for new techniques
in scientific computing and differential equation solvers [6]. The target of our work is to
evaluate the difficulty and utility of implementing parallel NGP code for solid mechanics
simulations. This can be achieved by first implementing the code modifications in the
solid mechanics module of Albany (called LCM) and using it as a test bed. Eventually,
optimizations used in Albany can be reimplemented in production codes such as Sierra [8]
or the LAME constitutive models [7].

We target the material models in Albany because of both the simplicity and relative
isolation of the material code compared to other parts of Albany and because of the poten-
tial performance gains that can be achieved by optimizing the material model code. Initial
measurements show that especially for more complicated material models such as the Crys-
tal Plasticity model, evaluation time for the materials can consume roughly 72% of the
total Albany execution time. This implies that optimizing the material model can create
significant speedups in Albany simulations.

We use the Kokkos library, found in the scientific computing package Trilinos, as the
platform for this parallelization. Kokkos is a parallelization library that uses Views to
abstract the way in which data is used by the application. This provides a great amount of
portability between CPUs, accelerators, and coprocessors [2, 3]. Ideally, any Kokkos code
can run on any of these platforms. Previous uses of Kokkos in Albany have focused on
parallelizing finite element evaluations for ice sheet simulations [1].

Lessons learned through the application of Kokkos to constitutive models in Albany
will provide insight on the adaptation of Sandia’s production engineering codes for emerging
next-generation platforms.

∗UNC Chapel Hill, nmorales@cs.unc.edu
†Sandia National Laboratories, djlittl@sandia.gov
‡Sandia National Laboratories, stamoor@sandia.gov

N. Morales, D. Littlewood, and S. Moore 349

2. Implementation. We provide a new material model interface in Albany/LCM,
called ParallelConstitutiveModel (Listing 1). This interface provides a way for users to
provide an evaluation kernel that is run for each element. The evaluation kernel must be
provided as a functor (with operator() defined) or as a C++11 lambda.

Listing 1: The base class interface for parallel constitutive models in Albany/LCM.

template<typename EvalT, typename Traits, typename Kernel>
class ParallelConstitutiveModel: public ConstitutiveModel<EvalT, Traits>
{
// ...

protected:

virtual Kernel createEvalKernel(FieldMap &dep_fields, FieldMap &eval_fields,
int numCells) = 0;

};

The pure virtual createEvalKernel() method must be implemented by any inheriting
class. This function is called by the base class before any material model evaluation, and
constructs and initializes any internal data of the kernel (such as dependent fields). The
type of this functor is passed in to the interface as the third template argument which
allows the base class to use the type in the internal Kokkos parallel_for call. The kernel
code itself, supplied either by a lambda or by operator() on the functor must be declared
KOKKOS_INLINE_FUNCTION.

2.1. Parallelization. ParallelConstitutiveModel uses the Kokkos library in the Trili-
nos packages in order to parallelize the material model kernels. The advantages of using
Kokkos are that code can be written similarly for all platforms, including GPU accelerators
or CPU-like coprocessors. However, a significant caveat of this is that kernel code cannot
refer to non-kernel code. This means that every function or method called from kernel code
must itself be declared KOKKOS_INLINE_FUNCTION. This means that STL functions cannot be
called from inside the kernel and neither can standard library math functions. Any third
party code must be modified to work inside a Kokkos kernel.

This is a significant but not insurmountable limitation. Most of the material models
in LCM have a limited set of external code that they refer to. For example, in order
to replace the Neohookean material model with parallel code, we only had to implement a
Kokkos compatible tensor class. However, other models such as the Crystal Plasticity model
would require more complex tasks, including the implementation of a nonlinear solver in
Kokkos. Furthermore, some models use the Sacado automatic differentiation library that
is part of Trilinos. In order for the parallel constitutive model to be able to use automatic
differentiation, Sacado must support Kokkos.

Other problems are related to the dynamic nature of the Albany library. Most of the
Albany code is generalized in order to provide a flexible interface for experimentation in
computational simulation. This can have performance implications. For example, Albany
supports a run-time dependent dimensionality. This dimensionality is used to determine the
allocation sizes of many classes, including tensors that are used locally in the kernel. While
CUDA and Kokkos support the use of operator new() in kernel code, this internally calls
the GPU heap allocator. In smaller kernels such as the Neohookean material model, the use
of dynamic memory allocation can have severe performance implications. Because of this,
we limited the tensor code used in the parallel material models to three dimensions. Support
could be added for higher-dimensional tensors using the heap allocator for any dimension
above 3 while maintaining the use of fixed stack array for dimensions less than or equal to

350 Material Models for NGP

3.
The parallel kernel is instantiated once per material and applied to each element that

uses the material. Internally, each element must also iterate over all of the quadrature
points for that element. We decided not to parallelize this inner loop because the number
of integration points is always relatively small, and for the simpler material models there
would be little benefit for doing so. Each inner loop iteration of a Neohookean kernel, for
example, is simple enough to be executed in a short enough amount of time for the transfer
time to dominate even more on the GPU.

Data required by the kernel such as the Jacobian or the deformation gradient is stored
using the existing MDField class in the Phalanx package of Trilinos. This class internally
uses a Kokkos view to represent the data on device code, allowing much of the existing
code to remain unchanged. The data on GPUs is set using Unified Virtual Memory (UVM).
This makes the implementation simpler at the cost of a slight performance hit. We also
implemented code which allows this data to be transferred using pinned/pageable memory
for better performance. This is done using Kokkos host mirrors and deep copies.

2.2. Extensions to Albany and Other Contributions. In addition to the parallel
constitutive model interface, we implemented a parallel version of the Neohookean material
model. This can be used to speed up simulations that use the material model in addition
to being used as an example for parallelizations of more constitutive models.

In order to measure the results of the parallelization, several performance monitor classes
were implemented. These classes include the CounterMonitor object, which tracks several
counters that can be implemented or decremented; TimerMonitor which tracks the accumu-
lated time in a set of timers; and VariableMonitor which tracks the history of a variable as
its value changes over time. All of these monitors output CSV table data that can be read
by most spreadsheet programs or parsed by post-processing scripts. We also implemented
a minimal generic tensor class that closely mirrors the functionality of the existing Intrepid
MiniTensor in Trilinos. However, the tensor class uses stack instead of heap memory for
performance reasons and can also be used in Kokkos kernel code. Finally, we added support
in the Material Point Simulator for multiple elements for performance testing.

Other contributions include a wiki entry and scripts for Kokkos support in Albany on
the Shannon compute cluster. We also implemented a set of post-processing python scripts
that can generate plots and graphs from a set of CSV files representing different runs of
Albany or the Material Point Simulator.

3. Results. We tested the parallel constitutive model code on the Shannon testbed
cluster. Each node of the Shannon testbed has two 8-core Sandy Bridge Xeon E5-2670s
running at 2.6GHz with hyperthreading deactivated. The nodes we used each had 4 NVIDIA
k40m GPUs. In all our results, we used only one CPU core and a single GPU.

All our tests were run on a modified version of the Material Point Simulator. This
Albany tool is used to test new constitutive models and does minimal computation outside
of the material models. The Material Point Simulator normally works on a single element
and quadrature point, but we modified it to take a variable number of elements, defaulting
to one. Each element is identical with the same operation being repeated on all the elements.
This allowed us to measure how the parallel algorithm scales with the number of elements
in the simulation.

We used the Neohookean material model for the experiments. The model was simple to
convert to parallel code, only needing modification to the tensor class used for the material
model evaluation. The Neohookean model is fast and efficient to evaluate, requiring few
floating point operations to execute and not needing any internal iterative solvers or other

N. Morales, D. Littlewood, and S. Moore 351

100 101 102 103 104 105

Number of Elements

0

2

4

6

8

10

12

14

16

T
im

e
 (

s)

Total Time

Timer

GPU

Serial

Fig. 3.1: Total time taken by the serial and GPU versions of the Material Point Simulator.

similar complex operations. This allows us to have a baseline material model that does not
vary in execution time depending on the input to the model.

The first performance analysis was done comparing the overall computation time of a
single-threaded CPU version compared to the GPU version using one GPU. The number
of elements ranged from 1 element to 100000 elements with one quadrature point per ele-
ment. For less than 100 elements the serial version performed better due to the overhead
of transferring data to the GPU and synchronizing results with the CPU. However, as the
number of elements increased, the GPU started to dramatically outperform the serial version
(Figure 3.1).

The second experiment measured the timing of different aspects of the simulation, in-
cluding the transfer time of the data needed by the kernel and the actual execution time
of the kernel. Figure 3.2 shows the different timings. The transfer time increases linearly
with the number of elements. However, the execution time does not. Therefore the ratio of
transfer time to execution time increases as the number of elements increases.

This ratio becomes proportionately less as the complexity of the material model in-
creases since the ratio of bytes transferred to floating point operations executed decreases.
Furthermore, the transfer time can be mitigated by overlapping the communication with
some computation. If the CPU can do work while data is being transferred, the transfer
time is effectively hidden. Finally, if more of Albany/LCM is parallelized using Kokkos,
some or all of the input data to the material model could already exist on device memory.
This would mean that it would not be necessary to transfer this data for evaluation of the
constitutive model.

The third experiment investigates the transfer times with CUDA Unified Virtual Mem-
ory (UVM) compared to using pinned/pageable memory. Overall, there is approximately
a 16% performance gain in using pinned/pageable memory. This is a performance tradeoff
between ease of programming (UVM) and performance (pinned/pageable memory). The

352 Material Models for NGP

100 101 102 103 104 105

Number of Elements

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
im

e
 (

s)

GPU Time

Timer

Constitutive Model: Kernel Time

Constitutive Model: Transfer Time

MPS: Total Time

Fig. 3.2: Time taken by the kernel execution and data transfer, compared to the total time
taken by the GPU version of the Material Point Simulator.

performance gains only matter when data transfer is a significant portion of execution time.
With more complicated models, this ratio becomes less and bandwidth savings become less
effective.

Additionally, specifically optimizing for GPU memory transfers in this way introduces an
extra copy operation that is not necessary on the CPU version of the code. Although Kokkos
abstracts away some of the differences between host and device code, some optimizations
require specific knowledge of what execution space Kokkos is actually running in.

These results show a significant performance advantage in parallelizing Albany/LCM’s
constitutive material models. This is especially significant because the Neohookean model
can be evaluated quickly, making it potentially less feasible for use on the GPU because the
transfer time is comparatively large. It is expected that for more complex material models,
the performance gains will be greater, although the required code modifications will increase
in complexity.

N. Morales, D. Littlewood, and S. Moore 353

100 101 102 103 104 105

Number of Elements

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (

s)

Transfer Time

Timer

UVM

Pinned/Pageable

Fig. 3.3: Transfer time comparison between Unified Virtual Memory (UVM) and pinned/
pageable memory on the GPU version of the Material Point Simulator.

4. Conclusion. Our parallel implementation of the Albany/LCM constitutive material
model shows significant performance advantages over serialized code. These results show the
way forward for parallelizing different aspects of Albany or production-ready computational
mechanics codes. We demonstrate a path forward with some caveats to be aware of.

First, we have to deal with the problem of transfer time to the GPU. Three solutions
were proposed: using more complicated material models, overlapping communication with
computation, and parallelizing more parts of Kokkos so that the input to the material models
already exists on the device.

Secondly, we brought up an issue with the dynamic nature of Albany. The goal of
Albany is to be general purpose; however, this can cause some performance inefficiencies
in device code where heap memory allocation is expensive. Furthermore, the memory that
the internal CUDA implementation can use for the heap is fixed for each kernel run. This
removes some of the abstraction that Kokkos uses.

Thirdly, the parallelization of more material models or of other aspects of Albany/LCM
requires that certain primitives be implemented in Kokkos, due to the dual host/device
nature of Kokkos. This means that C++ STL algorithmic primitives, math code such as
matrices or tensors, and solvers must have a Kokkos-friendly implementation. The advan-
tage is that this code can also be re-used for non-Kokkos code, with minimal performance
impact.

As we move forward with implementing our testing and production codes like Sierra
or LAME for use in next generation platforms, it is important that all of these caveats
be considered. Targets for parallelization should be chosen because of their performance
characteristics and the ease of porting them to next generation computing platforms.

REFERENCES

354 Material Models for NGP

[1] I. Demeshko, H. C. Edwards, M. A. Heroux, R. P. Pawlowski, E. T. Phipps, and A. G. Salinger,
Kokkos implementation of Albany: a performance-portable finite element application.

[2] H. C. Edwards and D. Sunderland, Kokkos array performance-portable manycore programming
model, in Proceedings of the 2012 International Workshop on Programming Models and Appli-
cations for Multicores and Manycores, ACM, 2012, pp. 1–10.

[3] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Computing,
74 (2014), pp. 3202–3216.

[4] V. V. Kindratenko, J. J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C.
Phillips, and W.-m. Hwu, GPU clusters for high-performance computing, in Cluster Computing
and Workshops, 2009. CLUSTER’09. IEEE International Conference on, IEEE, 2009, pp. 1–8.

[5] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and T. J.
Purcell, A survey of general-purpose computation on graphics hardware, in Computer graphics
forum, vol. 26, Wiley Online Library, 2007, pp. 80–113.

[6] A. G. Salinger, R. A. Bartett, Q. Chen, X. Gao, G. Hansen, I. Kalashnikova, A. Mota, R. P.
Muller, E. Nielsen, J. Ostien, et al., Albany: A component-based partial differential equation
code built on trilinos., tech. rep., Sandia National Laboratories Livermore, CA; Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), 2013.

[7] W. M. Scherzinger and D. C. Hammerand, Constitutive models in LAME, SAND Report 2007-5873,
Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2007.

[8] SIERRA Solid Mechanics Team, Sierra/SolidMechanics 4.36 user’s guide, SAND Report 2015-2199,
Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2015.

CCR Summer Proceedings 2015 355

MARCHING CUBES APPLICATION FOR MANTEVO

STEVEN J. MUNN∗ AND KENNETH MORELAND†

Abstract. We propose a set of highly portable, lightweight, and scalable implementations of the
Marching Cubes algorithm in C++ allowing users to easily modify and optimize the software for testing and
benchmarking purposes. Our application fits within the Mantevo project guidelines to encourage widespread
usage in the high-performance computing community. It includes implementations of Marching Cubes in
serial and in parallel using OpenMP and MPI.

1. Introduction. Large-scale scientific visualization tasks are often time sensitive and
computationally expensive. Industry standard software in the field is typically large and
sophisticated making it difficult to optimize for new hardware. The core idea driving the
Mantevo project is to break down large programs into minimalistic key components [1],
which are easy to optimize on any system including hardware prototypes. In this spirit, we
focus our attention on a central component of scientific visualization: Marching Cubes.

Cline et al. first proposed this algorithm in 1987 [6] and it is widely used in standard
software today such as ParaView or VTK from Kitware [2] [4]. It is a simple procedure, but
choosing the best hardware and implementation algorithm for it can be diffiucult. Specifi-
cally, when speed or volume constraints in modern scientific applications warrant a parallel
implementation of the technique, the amount of effective parallelism available depends on
the size of the problem and the type of hardware on hand. These constraints motivate the
use of specific data structures and a particular partitioning of the input for efficient parallel
processing.

Our Marching Cubes miniapp provides some generally useful implementations of the
algorithm and allows users to easily modify them to fit new constraints. It includes a
serial implementation of the algorithm, a shared memory implementation using OpenMP, a
distributed memory implementation using MPI, and a combination of the latter two. Users
can add functionality or optimize the miniapp depending on their needs relatively easily
compared to working on software packages like VTK.

Although Marching Cubes is a well known algorithm, we review its specifics in Section
2 for users, especially those generally interested in Mantevo miniapps, who may not be
visualization specialists. The next section describes the overall structure of this project’s
source code, and it helps users compile and run our software. Section 4 covers the most
important implementation details for those who wish to modify or extend our code.

2. Marching Cubes. Marching Cubes starts with a user specified isovalue. The goal
is to produce a three dimensional mesh contouring the isovalue in a given image volume.
Mathematically, an image volume is a discrete scalar field with each point in space bearing
an image value. To produce this contour mesh, we start at the first cell of the image volume
and move (march) from cell to cell (cube to cube) and compare the vertex values to the
isovalue. If a pair of vertex values straddle the isovalue, we interpolate the mesh intersection
along the edge joining these two vertices.

After finding the mesh intersection points we group them into triangles. Triangles are
the geometrical unit that make up three dimensional surfaces in computer graphics. The
sets of triangles from each cell, in the end, form the final isosurface mesh desired.

Sections 2.1 and 2.2 review the essential procedure Cline et al. [6] outline in their
original Marching Cubes paper, or Newman et al. [7] surveyed more recently. Section 2.3

∗Univeristy of California Santa Barbara, sjmunn@umail.ucsb.edu
†Sandia National Laboratories, kmorel@sandia.gov

356 Marching Cubes Mini-App

delves into parallelization difficulties, which are typically in resolved in implementations of
Marching Cubes but left implicit in the literature.

2.1. Marching Squares. To better illustrate the process, we consider the marching
squares algorithm. This is the same idea as Marching Cubes except that the input data is
a two dimensional image and the output is a contour line rather than a surface. In Figure
2.1(a) we present an example input image. The numbers written at the vertices represent
the image values at those points. Figure 2.1(b) shows the first step of marching squares in
which we interpolate the contour line between the vertex values of the grid.

0 0 0 0

0

4

0 0 0 0

0

022 22

22 10

(a) Initial image

0 0 0 0

0

4

0 0 0 0

0

022 22

22 10

(b) First step

Fig. 2.1: Initial image and first step of marching squares.

After computing the intersection points specifying the line in the first square we move
to the second in Figure 2.2(a). Then we proceed through each square in the image file until
we end at the final step in Figure 2.2(b) with our complete contour line.

For marching squares, there are 24 = 16 possible combinations of vertex indices above
or below the isovalue. For each case, we know which edges the isoline will intersect, and we
can interpolate the intersection point along that edge.

2.2. Building the Isosurface Mesh. For Marching Cubes, there are 28 = 256 pos-
sible combinations; however, it is most efficient to implement a lookup table mapping the
cases (for example vertex 3 and 4 are above the isovalue) to edges where the contour mesh
will intersect (edges 2, 3, 4, 7, 8, and 10 in the previous case). Figure 2.3(a) contains an
example case using the vertex indexing convention we use in the software. Once we know the
vertices that are above and below the isovalue, we look up the corresponding edges where
the mesh will intersect.

In practice, this map returns intersection edges for each triangle to be added to the
isosurface mesh. For example, if there are four intersection points on the cell, our map will
return 6 edges relevant to the 6 points definining the two triangles, which we will add to
the output mesh.

Adding triangles to the mesh one after the other poses a problem though. Adjacent
cubes will share edges and the triangles within these cubes will share points at the same

S.J. Munn and K. Morland 357

0 0 0 0

0

4

0 0 0 0

0

022 22

22 10

(a) Second step

0 0 0 0

0

4

0 0 0 0

0

022 22

22 10

(b) Final step

Fig. 2.2: Second and finals steps of marching squares.

0

1 2

3

5

4

6

7

(a) Vertex indices

0
1

2
3

8

9
11

10

4
5

6
7

(b) Edge indices

Fig. 2.3: Cube of data: (a) Only vertex number 6 has a value beneath the isovalue, (b) The
contour mesh intersect edges 5,6, and 11.

coordinate; therefore, consistently saving the coordinates for all three points in each triangle
within a cube will result in redundancy.

The solution is to store point coordinates in a separate data structure from the mesh.
Point coordinates are kept in an array whereas the mesh is kept as a collection of point
indices referring to particular coordinates. Figure 2.4 illustrates this principle.

There are several methods to determine if an intersection point already exists in memory.
A popular technique is to partition the image volume into blocks. A data structure is then
built to keep track of points in each block. When marching inside a block, this data structure

358 Marching Cubes Mini-App

Point Index 0 1 2 3
x 0.5 1 1 1.5
y 1 1 0.5 1
z 1 0.5 1 1

Mesh triangle0 triangle1
 0 1
 1 2
 2 3

x

y

z

0 10

1

2

3

Fig. 2.4: Illustration of the mesh data structure. The mesh is a collection of triangles.
Triangles are triplets of point indices.

returns the nearby points to search for redundancies.
For this project we chose a different approach for performance reasons. Searching even

a small set of floating point numbers can be time consuming, so we devise a method that
does not require any searching.

To begin, we establish a consistent convention for indexing each edge in the data set
(see Section 4.3). When a new intersection point is located, we add the point index to a
data structure mapping edge indices to point indices. If we locate an intersection point
where the edge already has a point index associated with it, then we use the preexisting
point index rather than create a new one.

2.3. Parallelizing Marching Cubes. To make full use of modern, multicore ma-
chines, Marching Cubes must be done in parallel. There are two major types of parallelism
this miniapp leverages: shared memory and distributed memory.

2.3.1. Shared memory. In a shared memory setting, threads all have access to the
entire image volume. Before marching through the data, we partition the space into small
blocks. During run-time, threads accept ranges within these blocks over which to march
and add triangles to the mesh.

Our previous strategy of mainting an edge to point index map for eliminating redudant
points is problematic here though. Concurrent threads cannot simultaneously write to the
map as this would cause a race condition.

Miller et al.’s solution [8] is to assign a private map and mesh to each thread. These
thread maps will only contain unique points thanks to their corresponding thread map.

Once all the threads have marched through all their assigned blocks, Miller et al. propose
we merge all the thread meshes into a fully connected final mesh. This step is necessary
because shared memory threads work on small data blocks and would result in small mesh
fragments otherwise. Section 4.4 covers the specifics of this merging process.

S.J. Munn and K. Morland 359

2.3.2. Distributed Memory. For distributed memory implementations, a master
process assigns data block ranges to concurrent processes. Each process loads only the
block of data it has been assigned to its local memory from the original data file. Since
distributed memory processes work on larger data blocks than their shared memory coun-
terparts, it is not necessary to merge meshes from the different processes together.

More specifically, the reason why we do not merge meshes from the different processes
is because in distributed memory it is more efficient to maintain redundancy at the data
boundaries. This redundancy would bloat a thread’s memory; however, for processes it is
avoids lengthy communications with other concurrent processes.

3. Software Design Choices. Our project aims to provide a set of basis implementa-
tions easily combined or adjusted by the user. Each implementation leverages the advantages
of typical hardware architectures found in industry. Because the various implementations
may not all be relevant to every user, we separate them into different folders with their
own compiling process. This way, users do not need to resolve all the dependencies for each
implementation; they can pick the relevant ones for their use case and ignore the rest.

To this effect, we maintain a common folder with general purpose, implementation
independent code. The other directories all have their own main.cpp and Makefile files for
compiling and running Marching Cubes.

GeneralContext
+ imageInput : Image3D
+ dataExtent : int[6]
+ isovalue : float
+ mesh : TriangleMesh
- _strategy : *MarchAlgorithm
+ setAlgorithm(inStrategy : MarchAlgorithm *)

MarchAlgorithm

+ march(data : GeneralContext)

SerialAlgo

+ march(data : Gerenal Context)

OpenMPAlgo

+ march(data : GeneralContext)

MergeMPAlgo

+ march(data : GeneralContext)

MpiAlgo

+ march(data : GeneralContext)

Fig. 3.1: The Strategy design pattern: GeneralContext includes a member pointer to an
object inheriting from the MarchAlgorithm class.

For clarity, we follow the Strategy design pattern [3] in which individual implementations
appear as distinct objects inheriting from an abstract class representing their common goal.
Figure 3.1 illustrates this structure in a UML diagram.

Each implementation directory contains the definition for a child class of the MarchAl-
gorithm parent. This definition’s header file encapsulates all the implementation’s specific
dependencies, neatly confining them within their implementation’s folder.

To compile an executable implementation, users run the build process in the common
directory first. Here, the compiler will not need any libraries outside of standard C++.
Depending on the support users have, they may proceed to run the build process in the
implementation directories.

4. Implementation Fine Points. Writing any efficient implementation of Marching
Cubes in C++ requires a careful study of the data structures and subroutines employed.
This section collects the important, and perhaps less intuitive, particulars of the miniapp.
The benefit will especially be for readers who wish to modify the miniapp’s code.

4.1. File In/Out Operations. Since Mantevo miniapps are meant to be minimal, we
provide support only for one kind of file: vtk legacy. For image volumes, this consists of a

360 Marching Cubes Mini-App

header containing information such as the file dimensions, spacing, and origin in 3-d space.
The point values follow the header and are stored in binary. The file stores points along the
x-axis first, then the y and z directions. Thus a point with coordinates r =

(
x y z

)
will have a position in the file given by,

p = x+Rx × y +Rx ·Ry × z (4.1)

where the coordinates start at zero and Rx is the image volume range along the x-axis [4].
During runtime the software stores image data in memory in the exact same order, so

Equation 4.1 is relevant for finding data values during execution as well.
In practice, the LoadImage3D class loads the input file; however, we split this into

a two step procedure because the distrubuted memory implementation requires multiple
file reading objects for each process. In the main.cpp file for any implementation, the
LoadImage3D object reads only the header for a given file. Execution then passes the C++
object by reference to its algorithm object, which decides to read the entire file or only a
given block of data.

4.2. Triangle Mesh Class. The triangle mesh encapsulates three private member
arrays: points, normals, and indices. Each of these is an array of Triplets–a template class
object with three private data members. Point coordinates and normal vector directions
correspond to float type Triplet objects and sets of triangle indices correspond to integer
type Triplet objects.

Users may merge triangle meshes from parallel threads together without checking for
point redundancy using the + = operator; however, this is not thread safe and must be
done in an OpenMP critical directive. The + = operator’s effect amounts to concatenating
the private member arrays after incrementing the point indices of the right-hand value by
the number of points in the left-hand Triangle Mesh.

Merging meshes while eliminating redundancies in the points to produce a fully con-
nected mesh is a different matter, which involves the DuplicateRemover class described in
Section 4.4. The DuplicateRemover class depends on a consistent convention for indexing
edges, which we describe in the next section.

4.3. Edge indexing. The purpose of indexing the edges in the image volume is to
uniquely associate interpolated points with the edge on which they belong. Each edge
should host only one point. When a thread or process is marching through its block of data,
it uses the edge indices to avoid adding redundant points to its own TriangleMesh object.
Later, as we merge meshes from different threads, the edge indices help identify redundant
points between different TriangleMesh objects through a process detailed in Section 4.4.

Edges follow essentially the same indexing convention as data points in the file. We
start with edges along the x-axis and proceed to the y and z axes. Figure 4.1 lays out
the edge numbers along the x and y axes, while Figure 4.2 demonstrates numbering on the
z-axis edges.

How do we determine the edge number in the image file given the Cartesian coordinates
of a cell and the local edge number (between 0 and 11)?

Considering the local edge number convention from Figure 2.3(b), we denote E (a) the
global edge number given a local edge identifier of a. Further noting Rx = dx − 1 where dx
is the data dimension along the x-axis we have,

E (0) = x+Rxy + (Ry + 1)Rxz
E (3) = Nx + x+ (Rx + 1) y + (Rx + 1)Ryz
E (8) = Nxy + x+ (Rx + 1) y + (Rx + 1) (Ry + 1) z

S.J. Munn and K. Morland 361

0 1 2

3 4

10 11

12 13

22 23

3
6

3
7

3
8

3
9

4
4

4
5

5
0

5
1

5
6

5
7

x

y

z

Fig. 4.1: Edge numbers along the x and y axes.

x

y

z
z=0

72

77

82

8784

7573

z=1

88

98

100

91

Fig. 4.2: Edge numbers along the x and y axes.

where Nx = Rx (Ry + 1) (Rz + 1) and Nxy = Nx + (Rx + 1)Ry (Rz + 1).
Offsetting the x, y, or z values in the above equations will allow us to find the global

edge indices for other local indices as such,

E (1, x, y, z) = E (3, x+ 1, y, z)
E (2, x, y, z) = E (0, x, y + 1, z)
E (4, x, y, z) = E (0, x, y, z + 1)
E (5, x, y, z) = E (3, x+ 1, y, z + 1)

We do not cover all the cases here to avoid being pedantic. Interested readers can
examine the EdgeIndexer.cpp file in the common/Algorithm directory of the miniapp.

In the general software context, an algorithm object (inheriting from MarchAlgorithm)
will instantiate an EdgeIndexer object for the data block it is assigned to. Threads, in a
shared memory context, use a global edge indexing scheme, whereas processes use a local
scheme since we will not merge their output meshes. The EdgeIndexer class only implements
the above equations. It is the DuplicateRemover class that removes redundant points.

362 Marching Cubes Mini-App

4.4. Duplicate Remover and Point Map classes. The duplicate remover encap-
sulates an array of edgePointPair structures. The latter’s members are: an edge index
number, a point index number, and a new point index number for removing duplicates.
The purpose of this object, based on Miller et al.’s paper [8], is to find duplicate points
between two meshes, create new point indices for all the unique points, and map old indices
to new ones. The buildMesh() function will use this map to create a new, fully connected
TraingleMesh object.

Edge number 20 22 20 24
Point number 0 1 2 3

Table 4.1: An example initial state for the the duplicate remover’s data array.

The duplicate remover’s data array begins with an array of unsorted edgePointPair
structures. Table 4.1 exemplifies an initial state for the object. The edge and point numbers
simply appear in the order they emerged during the Marching Cubes process.

Edge number 20 20 22 24
Point number 0 2 1 3

Table 4.2: Sorted duplicate remover data array.

To merge two meshes, the user first calls a member function in the duplicate remover to
sort itself by edge number. For the data in Table 4.1, table 4.2 represents the sorted output
of this member function.

Any point on the same edge will coincide and is thus a duplicate. A member function
of the duplicate remover will iterate through its data array comparing each edge to the
previous one while writing new point indices to the data array. New point indices start at
zero and are only incremented when a new edge appears. Table 4.3 shows the results of
such an iteration.

Edge number 20 20 22 24
Point number 0 2 1 3
New Point Number 0 0 1 2

Table 4.3: Sorted duplicate remover data array, with new point indices added.

With the new unique point identifiers in memory, the duplicate remover proceeds to
map old to new point indices. Algorithm 15 details the steps for producing this map.

Finally, the buildMesh() function accepts this map and builds a whole new mesh from
the one it is given where redundant indices in the triangles are replaced with a unique
identifier.

4.5. Timing and Reporting. Reporting performance measures, relevant run time
data, and errors is vital for a miniapp. We provide three types of reporting in our software:
runtime reporting via a Log class that reports data as it is being processed, error reporting

S.J. Munn and K. Morland 363

Algorithm 15 Map old point identifiers to new ones
Map is an array
for iDataPt ∈ |DataArray| do

Map[DataArray[iDataPt].oldPointNumber]
= DataArray[iDataPt].newPointNumber

via the C++ standard library, and a document class that saves performance data in a YAML
file for comparing different runs.

The Log class provides a performance aware method for displaying runtime data. The
user must hard code its reporting level into the main.cpp file before compiling. This means
that ignored messages are never compiled and thus do not impact performance in any way.

4.6. Parallel Processing Blocks. The Ranges object stores the extent of a block
of data sent to a thread or process. In OpenMP, these blocks are cubic chunks of data,
significantly smaller than the entire data size for load balancing purposes. In MPI, these
are slabs covering the full x and y extent but partitioned in the z direction by the number
of available processes.

5. Conclusion. Marching Cubes is an essential tool for scientific visualization and its
many subroutines are representative of the general tasks performed in the field. Systems
able to perform Marching Cubes in a timely manner will also be effective for a host of other
visualization techniques.

Our project’s purpose is twofold: testing new hardware and testing implementation
algorithms tailored to new hardware. We achieve this dual purpose by reducing the Marching
Cubes algorithm strictly to its computationally relevant components. To address the variety
of hardware available, however, we also provide several basic implementations of the same
overall procedure. Users can adapt the most relevant implementation for their own usage.

In the future we hope our miniapp will provide a massively parallel implementation
of Marching Cubes although at the time of writing, it does not. GPU’s or the new Intel
Xeon Phi coprocessors would leverage this to achieve run times currently inaccessible to the
project. The major algorithmic difference, inspired by Lo et al. [5], would involve counting
all the intersection points before computing their location so as to store points during the
marching process in shared rather than distributed memory locations.

REFERENCES

[1] Home of the mantevo project. Accessed: 2015-09-08.
[2] U. Ayachit, ParaView Guide, Kitware Inc., 2015.
[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-

oriented Software, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
[4] K. Inc., VTK User’s Guide, Kitware Inc., 2010.
[5] L.-t. Lo, C. Sewell, and J. P. Ahrens, Piston: A portable cross-platform framework for data-parallel

visualization operators., in EGPGV, 2012, pp. 11–20.
[6] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algo-

rithm, SIGGRAPH Comput. Graph., 21 (1987), pp. 163–169.
[7] W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3d surface construction algo-

rithm, in ACM siggraph computer graphics, vol. 21, ACM, 1987, pp. 163–169.
[8] R. Miller, K. Moreland, and K.-L. Ma, Finely-Threaded History-Based Topology Computation, in

Eurographics Symposium on Parallel Graphics and Visualization, M. Amor and M. Hadwiger, eds.,
The Eurographics Association, 2014.

CCR Summer Proceedings 2015 364

COMPARING POWER PROFILES OF MOLECULAR DYNAMICS
SIMULATORS

JORDAN T. RAITSES∗ AND RYAN E. GRANT†

Abstract. The increasing power demands of High Performance Computing (HPC) clusters has led
to the creation of component-level power measurement tools such as Power Insight and Intel’s RAPL. To
interface with these hardware-level power measurement tools, a portable library known as Power API has
been developed at Sandia National Laboratories. Now that the research community can access detailed power
information from HPCs, they can develop software (even to the kernel level) that intelligently monitors and
adjusts its own power usage to meet efficiency or performance goals. Sandia uses export controlled or highly
technical software to benchmark its systems, but there are non-export controlled, simpler analogs known as
mini apps that are made publicly available for collaborative research purposes. These mini apps approximate
the performance of the full software while being much easier to understand and not posing an export risk.
This study shows that the molecular dynamics mini app, MiniMD, approximates the power profile of its
full-size equivalent, LAMMPS, under similar input “decks”.[1]

1. Introduction. The number of transistors on chips has doubled every two years
since the mid 1970’s which results in a doubling of power density on these chips (though
this trend is beginning to slow, the salient effects are still relevant). High Performance
Computing (HPC) clusters are composed of thousands to millions of processors and thus
require large and ever-increasing amounts of power. As a result, power/performance is an
important benchmark for operators of HPC clusters. Power Insight is a device, developed
in tandem with Sandia National Laboratories and Penguin Computing, which allows per-
component power measurement in an HPC node. The PowerAPI was also developed at
Sandia as a portable software library for interfacing with Power Insight or other power
measurement tools (e.g. RAPL). Such software and hardware allows these systems to be
“aware” of their own energy usage so that specialized software (or even Operating Systems)
can run more efficiently.

The many cores of a HPC make them well suited for solving problems with many data
points. Such problems, like molecular dynamics simulations, are split into smaller problems,
each of which is handled by a different node. LAMMPS is a program for modeling these
molecular dynamics problems on HPC clusters and can run simulations on hundreds of
machines simultaneously. While it is intended to be used for these simulations, it is also
useful for the HPC research community as a benchmark of a HPC cluster’s performance.
However, it is thousands of lines long and highly technical so Computer Science researchers
who do not understand molecular dynamics, cannot easily use or understand it. MiniMD
was built as an analog to LAMMPS, performing the same core functions without being as
unwieldy for non-experts. While its performance matches that of LAMMPS, it is unknown
whether or not it has a similar power profile–an aspect that is of importance if one is doing
power research.

2. Method. In this study, a script was used to run the PowerAPI on a node of one
of the HPC test beds at Sandia Labs. For these tests, one node of Shepard with 36 Dual
Intel Xeon Haswell cores and 128 GB DDR4 RAM and Power Insight v2 was used. The
script initialized data collection through the PowerAPI on the appropriate node, waited one
second (to allow collection of background “noise”), and ran the target program (LAMMPS
or MiniMD). The data from each run was collated by means of a python script which added
data from each new run to a database, organizing the power readings by the timestamp at

∗Binghamton University, jraitse1@binghamton.edu
†Sandia National Laboratories, regrant@sandia.gov

J.T. Raitses and R.E. Grant 365

which each reading was gathered. This database was used to find median power readings
across all program runs.

3. Results. No formal data analysis (e.g. calculation of standard deviation) has yet
been run. However the graphs seem to indicate that, for the duration of the programs’
run-times, their power profiles are very similar (as shown in Figure 3.1).

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12

P
ow

er
 (

W
)

Times (S)

Baseline
MiniMD

LAMMPS

Fig. 3.1: LAMMPS and MiniMD Power Measurements over Runtime

This is compared to a separate test in which LAMMPS alone was run on several input
decks. In the latter test, it is clear to see where each test ends and that the power profiles
of the program’s different runs are completely different (see Figure 3.2).

These functions show a sharp, initial increase in power consumption as the system
goes from resting (indicated by “Baseline”) to full power. Upon reaching full power, the
lines plateau, indicating maximum power consumption for the system. Finally, the lines
quickly descend back to the baseline as the programs finish running. This rectangular
function illustrates that the programs in my test, once started, largely ran at full power
until they completed. Other programs may have cyclical or curved functions of power draw,
corresponding to ‘busy’ and ‘waiting’ sections, but I haven’t observed any in my tests. It is
also possible that the power readings (taken at 1 Hz) were not sufficiently granular to show
such fluctuations.

REFERENCES

[1] J. H. Laros, P. Pokorny, and D. DeBonis, Powerinsight-a commodity power measurement capability,
(2013), pp. 1–6.

366 MD Simulator Power Profiles

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

P
ow

er
 (

W
)

Times (S)

LAMMPS LJ
LAMMPS EAM

LAMMPS Chain
LAMMPS Chute

LAMMPS Chute (scaled)
LAMMPS Rhodo

LAMMPS Rhodo (scaled)
Baseline

Fig. 3.2: Various LAMMPS Power Measurements over Runtime

CCR Summer Proceedings 2015 367

DISPLAYING MATERIAL PROPERTIES WITH EOS TABLE VIEWER

JARED M. STATEN∗, JOHN H. CARPENTER† , AND ALLEN C. ROBINSON‡

Abstract. Equations of state represent the equilibrium thermodynamic state properties such as pressure
or sound speed as a function of two other variables such as density and energy. For a given material, equation
of state (EOS) tables can be used to quickly calculate the properties and the state or phase the material will
be at each point of phase space. It can be difficult and expensive to subject materials to extreme conditions
and one must still infer properties from limited external measurements. Computer modeling is essential to
study the properties of materials over a wide range of phase space. A good modeling code can save valuable
time and money. However, good tools are needed to study carefully the EOS closure surfaces and models
of experiments which place material on certain trajectories in phase space. This paper documents efforts to
build a graphical user interface intended to be helpful in understanding improvements in accuracy, usability,
and functionality for such modeling efforts. The ultimate product is a fully-functional, visually-pleasing
EOS table visualization program.

1. Introduction. When running computational simulations, it is critical to know how
a material will act when subjected to varying temperature, pressure, density, and other con-
ditions. For example, the Euler equations, shown below, which conserve mass, momentum
and energy, can be used to model material properties at varying conditions.

ρ̇+ ρ∇ · u = 0 (1.1)

ρu̇ +∇p = 0 (1.2)

ρė+ p∇ · u = 0 (1.3)

The ‘dot’ notation refers to the total material derivative. Note that there are 5 equations
(mass, momentum, energy) and 6 unknowns (density, velocity, energy, pressure) in three di-
mensions. In order to solve these equations we find a way to reduce the number of unknowns
and ‘close’ the system. It is very common to assume that we can compute the pressure from
equilibrium thermodynamics assumptions. This closure property, called an equation of state
(EOS), is highly specific to the material at hand, and essentially requires that pressure be
given as a function of density and energy. The closure property for aluminum, for example,
is quite different from the closure property for an ideal gas. An ideal gas EOS is very simple,
and is displayed below as an example of a possible closure property for Euler’s equations.
These Euler equations are the fundamental equations representing continuum mechanics in
compressible media. Extentions of these equations add additional physics and additional
closure relations but the basic concepts are the same.

p = ρ(γ − 1)e (1.4)

Material properties can be accurately modelled with the use of these equations, but it
can be difficult to picture what is going on and fully understand the meaning of the closures
and how they relate to the dynamics of an experimental configurations. For this reason, a
computer program to visualize equations of state is incredibly valuable. Such a tool allows

∗La Cueva High School, Brigham Young University (Fall 2017), jared.staten@yahoo.com
†Sandia National Laboratories, jhcarpe@sandia.gov
‡Sandia National Laboratories, acrobin@sandia.gov

368 Visualizing the UTRI EOS Table

users to view visual representations of the equations of state for a material and to place
their calculations on this surface. This paper documents efforts to build an effective EOS
viewer in the SHIVR tool for analyzing results from hydrodynamic simulation software.
Such codes are sometimes called “hydrocodes” in the DOE community. The SHIVR tool
was initially created as part of the ALEGRA project at Sandia [1]. A great deal of effort can
go into building effective simulation tools for production usage, verifying and evaluating the
numerical methods, proposing better approaches and models and evaluating simulations
relative to experiments. Simulation tools are critical to help design experiments. The
better the tool suite the more likely that insight can be obtained from the actual physical
experiment. This project is part of a general effort to improve the user tools suite.

2. Building an effective EOS table viewer. This project began with an initial
prototype EOS table viewer created by a student, Brian Kelley, during the summer of
2014, to build a tool to visualize the UTri (Unstructured Triangluar) equation of state table
format recently proposed and supported at Sandia. This format is based on a triagular
grid, is double noded at phase lines to allow for discontinuities in the phase surface and
also supports uncertainty quantification via a modal expansion assumption. Our purpose
has been to make the existing program more robust, remove bugs, and add features to the
point where the viewer could be generally useful to both equations of state developers and
simulation software users utilizing the UTri format.

2.1. User interface organization. The user interface consists of two panes, which
serve two different purposes, as indicated by their names. The two panes are depicted in
Figure 2.1. The Background pane controls the table and variable displayed, the location of
the contours, and the specifics of the special contour and clicked point. The Display pane
primarily controls the color of parts of the display and whether or not they are present.

Fig. 2.1: The Background pane (left) controls the location of displayed objects and gives
table information. The Display pane (right) controls size and color of displayed objects as
well as whether they are displayed.

J.M. Staten, J.H. Carpenter, and A.C. Robinson 369

2.2. Continuous contours and full triangle shading. The old sort method for
contour points was faulty, and resulted in discontinuous contours. The first focus of this
project was to fix the contour point sorting process to produce continuous contours. Figure
2.2 shows the effect of the old method and the new method on contour display.

Fig. 2.2: Discontinuous contours with the old method (left) and continuous contours with
the new method (right)

An additional issue with the logic of the old program caused triangles only to be shaded
if they had a node present on the screen. This was causing some regions to be unshaded on
the display because the nodes were not visible, as indicated in Figure 2.3.

Fig. 2.3: Triangles without a node present on the screen were formerly left uncolored.

2.3. Point marking last user click. When a user click occurs, the Background
window displays the information for the clicked point. If the user moves the mouse, however,

370 Visualizing the UTRI EOS Table

it is easy to lose track of the clicked location. Now, a point is drawn at the location of the
user click to indicate the location of the last user click and give meaning to the displayed
information. This functionality is shown in Figure 2.4.

Fig. 2.4: The information displayed on the Background pane describes the values of the
clicked location, which is indicated by a small point.

Widgets were added to allow the user to change the color and size of the point, if desired.

2.4. User-specified contour display. An additional focus of the project was to allow
users to specify more information than before. The Background pane allows users to enter
min and max values for the contours displayed, as well as the number of contours. The
entry widgets and effect of user input are shown in Figure 2.5. Contour values can also be
reset to the default values. To prevent users from entering invalid values, the dependent
variable max and min are displayed to give the user an idea of a reasonable range of values.

2.5. Special contour. One of the biggest changes in the new table display program
is the use of a special contour. The special contour shows the dependent variable value
contour line through the point clicked by the user. The special contour can, of course, be
turned on and off with a button on the user interface, as well as with the spacebar.

In addition to appearing through clicked points, the special contour can be moved with
a slider on the background pane. Figure 2.6 shows the special contour and corresponding
slider. The slider shows the proportion between the min and max represented by the special
contour. For instance, if the special contour represents the value exactly between the min
and max visible, as represented in the Figure 2.6, the slider shows a proportion of 0.5. User
manipulation of the slider can move the special contour across the screen, toward the visible
min and max, accordingly. Users can also move the slider and contour with the arrow keys,
and change the special contour color if desired.

When zoom conditions are changed, the slider detects the visible min and max depen-
dent variable values and resets accordingly. This way, the proportion displayed by the slider

J.M. Staten, J.H. Carpenter, and A.C. Robinson 371

Fig. 2.5: When specified, contours are only displayed between the min and max set by the
user.

Fig. 2.6: The slider reflects the location of the special contour. In this case, the slider has
a value of 0.5, meaning the special contour is directly between the min and max.

always represents the location of the special contour relative to the visible min and max
dependent variable values.

2.6. Phase color editing when phase is present. It is critical that users are able to
distinguish between phases on the table. When a table is read into the display program, each
phase present in the table is assigned a color such that every phase is easily distinguishable
from the others. If desired, however, users can specify colors for each phase value. It is

372 Visualizing the UTRI EOS Table

critical that users can only change the color of phases that are actively displayed on the
screen. The phase color modification widgets are shown in Figure 2.7.

2.7. Log scale. For some tables, it is necessary to use log scale to display all of
the important aspects of the table. The pre existing external log scale buttons were not
functional, so they were removed. The updated log scale uses no widgets on the user
interface. Log scale is now used for the tables that needed it by changing independent
variable values to the log of the value when the table is read in. The values go through
calculation as logs, and then every value that is displayed externally is converted from log
back to the real value. For axis labels, the labels are still even spatially, but they do not
represent consistent numeric intervals. This illustrates to the user that log scaling is being
used. Figure 2.7 shows a table that uses log scale to display critical values.

Fig. 2.7: Phase color modification widgets appear for every phase active in the display. Also,
this table uses log scale to show more detail at low values.

3. User Reception. We expect users to be excited and intrigued when this new viewer
capability becomes available. We believe that the clear representation of phase regions is
likely to be most helpful in understanding simulations and in developing a positive feedback
between continuum modeling and equation of state modeling. The first production UTri
EOS table will be an Aluminum table. Additional developments for materials and other
closure properties such as electrical conductivity will add even more value.

4. Conclusions. Due to the expense and complications of physically subjecting mate-
rials to extreme conditions including pressure and temperature, computer simulations and
visualizations are extremely valuable tools to determine the phase of the material and how
this state relates to the physical simulation at hand through continuum equation modeling.
The purpose of this project was to build a functional and accurate tool for visualizing the
UTri equation of state tables and thus provide value in important scientific and engineering
efforts.

J.M. Staten, J.H. Carpenter, and A.C. Robinson 373

REFERENCES

[1] A. C. Robinson et al., ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code,
in Proceedings of the 46th AIAA Aerospace Sciences Meeting, Reno, NV, January 2008. AIAA-
2008-1235.

	Preface A.M. Bradley and M.L. Parks
	Computational Mathematics A.M. Bradley and M.L. Parks
	Verification of an Improved Cylindrical Magnetic Diffusion Algorithm in ALEGRAC.C. Ashcraft, J.H. Niederhaus, and A.C. Robinson
	New Developments in Using Schwarz Methods for Model Coupling J. Cheung, M. Perego, and P. Bochev
	Development of Higher Order Strong Stability Preserving Implicit-Explicit Runge Kutta Method S. Conde and J.N. Shadid
	Nonlocal Multiscale Finite Element Method T. Costa, S.D. Bond, D. Littlewood, and S. Moore
	Sensitivity of a functional to estimate the convection coefficient C.A. Garavito-Garzón and R.B. Lehoucq
	Active Subspaces for CFD/MHD A.T. Glaws, T.M. Wildey, and J.N. Shadid
	A Time-Parallel Method for the Solution of PDE-Constrained Optimization Problems M. Hajghassem, E.C. Cyr, and D. Ridzal
	Exploiting Domain Knowledge to Optimize Multi-Scale Peridynamics Computations M.H. Jamal and D.Z. Turner
	Improving the Tracer Correlation Problem in a Spectral Element Dynamical Core N.A. Lopez and M.A. Taylor
	First-Order Approximate Augmented Lagrangian Method (FOAAL) Implemented via an Object-Parallel Infrastructure for First-Order Methods, with a Serial Example Application to the Unit Commitment Problem G. Mátyásfalvi, J. Eckstein, and J. P. Watson
	Quasiminimal Support Optimization-Based Remap for Transport S. A. Moe, P. B. Bochev, K. J. Peterson, and D. Ridzal
	A Modification to the Remapping of Gauss-Lobatto Nodes to the Cubed Sphere M.R. Mundt, M.B. Boslough, M.A. Taylor, and E.L. Roesler
	Cross Platform Fine Grained ILU and ILDL Factorizations Using Kokkos A.Y. Patel, E.G. Boman, S. Rajamanickam, and E. Chow
	Applications A.M. Bradley and M.L. Parks
	Water Network Hydraulics with Pressure-Dependent Demand for WNTR: a Water Network Tool for Resilience M.L. Bynum, K.A. Klise, C.D. Laird, R. Murray, A. Seth, and J.D. Siirola
	Assessing the Economic Value of Grid-Scale Energy Storage Systems for Power System Expansion Planning R.S. Go, F.D. Muñoz, and J.P. Watson
	Efficient Destination Prediction Using Aircraft Trajectory Data B.D. Newton, M.D. Rintoul, C.G. Valicka, and A.T. Wilson
	Uncertainty Quantification of the Interfacial Mass Transfer Model in CTF Nathan W. Porter and Vincent A. Mousseau
	SPPARKS Software Updates J.M. Roberts, A.P. Thompson, J.A. Mitchell, and V.T. Tikare
	Graph Representation for Neural Networks F. Wang and F. Rothganger
	Software and High Performance Computing A.M. Bradley and M.L. Parks
	Performance Portable High Performance Conjugate Gradient Benchmark Z.A. Bookey, I.P. Demeshko, S. Rajamanickam, and M.A. Heroux
	Insights for the Design and Use of Generic Scientific Workflow Components A. Champsaur and G. Lofstead
	Hypergraph Partitioning with Local Refinement for Improving the Performance of Finite Element Methods on Distributed Unstructured Meshes G.F. Diamond and K.D. Devine
	Optimization of Block Sparse Matrix-Vector Multiplication on Shared-Memory Parallel Architectures R. Eberhardt and M. Hoemmen
	A Thread-Scalable Performance Portable Unordered Map for Manycore Architectures P.R. Eller and H.C. Edwards
	Creating an AMGX Adapter within the MueLu Package E. Furst, A. Prokopenko, and J. Hu
	Testing Framework for a Hybrid Triangular Solver W.B. Held and A.M. Bradley
	Visualization for Multigrid Aggregation B.M. Kelley, C.M. Siefert, and R.S. Tuminaro
	Simulating CMT-bone Communication Routines using Light-Weight Network Endpoint Models N. Kumar and S.D. Hammond
	In Situ Stream Processing and Storage for Exascale Systems E.W. Lohrmann and P. Widener
	Material Models for Next Generation Platforms N. Morales, D. Littlewood, and S. Moore
	Marching Cubes Application for Mantevo S.J. Munn and K. Morland
	Comparing Power Profiles of Molecular Dynamics Simulators J.T. Raitses and R.E. Grant
	Visualizing the UTri Equation of State J.M. Staten, J.H. Carpenter, and A.C. Robinson

